PHYSICS
OLYMPIAD

The Committee of
Japan Physics Olympiad

Basic to
Advanced
Exercises )




PHYSICS
OLYMPIAD

Basic to Advance d Exercises



This page intentionally left blank



PHYSICS
OLYMPIAD

Basic to Advanced Exercises

The Committee of
Japan Physics Olympiad

\\:3 World Scientific

NEW JERSEY « LONDON - SINGAPORE - BEIJING « SHANGHAI « HONG KONG « TAIPEI « CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Committee of Japan Physics Olympiad.
Physics Olympiad : basic to advanced exercises / The Committee of Japan Physics Olympiad.
pages cm
Includes index.
ISBN-13: 978-9814556675 (pbk. : alk. paper)
ISBN-10: 981455667X (pbk. : alk. paper)
1. Physics--Problems, exercises, etc. 2. Physics--Competitions. 1. Title.
QC32.C623 2013
530.076--dc23
2013037572

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

Forphotocopying of material in this volume, please pay a copying fee through the Copyright Clearance

Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy

is not required from the publisher.

In-house Editor: Song Yu

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore



Preface to the English Edition

The Committee of Japan Physics Olympiad (JPhO), a non-profit
organization approved and supported by the Japanese government,
has organized Physics Challenge, a domestic competition in physics,
for high-school students, every year since 2005 and has also selected
and sent the best five students to represent Japan in the International
Physics Olympiad (IPhO) every year since 2006. The main aim of
the activity of our Committee is to promote and stimulate high-
school-level physics education in Japan so as to achieve a world-class
standard, which we have experienced during the IPhO.

Physics Challenge consists of three stages: the First Challenge,
the Second Challenge, and the Challenge Final. The First Challenge
selects about 100 students from all applicants (1000~1500 in total
every year); every applicant is required to take a theoretical examina-
tion (90 min, multiple-choice questions) held at more than 70 places
on a Sunday in June, and to submit a report on an experiment
done by himself. The subject of the experiment is announced several
months before the submission deadline.

The Second Challenge is a four-day camp held in August; all
students in the Second Challenge lodge together for the whole
four days. Each student takes a theoretical examination and an
experimental examination; both are five hours long just like the
examinations in the IPhO.

The best 10-15 students who show excellent scores in the Second
Challenge are nominated as candidates for the Japan team for the
IPhO. They are then required to participate in a four-day winter
camp at the end of December and a four-day spring camp at the
end of March. They are also required to have monthly training via
email; the training consists of a series of questions and takes place
from September to March. At the end of the spring camp, these
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candidates take the Challenge Final, which consists of theoretical and
experimental examinations. The best five students are then selected
to form the Japan team for the IPhO.

This book contains some of the questions in the theoretical
and experimental examinations of previous Physics Challenges.
Elementary Problems in this book are taken from the First Challenge
competitions and Advanced Problems are mostly from the Second
Challenge competitions. Through these questions, we hope that high-
school students would become excited and interested in modern
physics. The questions from the Second Challenge reflect the process
of development of physics; they ranges from very fundamental physics
of junior-high-school level to the forefront of advanced physics and
technology. These problems are, we believe, effective in testing the
students’ ability to think logically, their stamina to concentrate
for long hours, their spirit to keep trying when solving intricate
problems, and their interest to do science. We do not require students
to learn physics by a piecemeal approach. In fact, many of the
basic knowledge of physics for solving the problems are given in the
questions. But, of course, since the competitions at the IPhO require
fundamental knowledge and skills in physics, this book is organized
in such a way that the basics are explained concisely together with
some typical basic questions to consolidate the knowledge.

This book is not only meant for training students for physics
competitions but also for making students excited to learn physics.
We often observed that the content of physics education in high
school is limited to basic concepts and it bears little relation to
modern and cutting-edge science and technology. This situation may
make physics class dull. Instead, we should place more emphasis on
the diversity and vastness of the application of physics principles in
science and technology, which is evident in everyday life as well useful
for gaining a deeper understanding of our past. Therefore, we try in
this book to bridge the gap between the basics and the forefront
of science and technology. We hope that this book will be used in
physics classes in high schools as well as in extracurricular activities.

We deeply appreciate the following people for their contri-
butions to translating the original Japanese version into English
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and editing the manuscript: Kazuo Kitahara, Tadao Sugiyama,
Shuji Hasegawa, Kyoji Nishikawa, Masao Ninomiya, John C. Gold
Stein, Isao Harada, Akira Hatano, Toshio Ito, Kiyoshi Kawamura,
Hiroshi Kezuka, Yasuhiro Kondo, Kunioki Mima, Kaoru Mitsuoka,
Yusuke Morita, Masashi Mukaida, Yuto Murashita, Daiki Nishiguchi,
Takashi Nozoe, Fumiko Okiharu, Heiji Sanuki, Toru Suzuki, Satoru
Takakura, Tadayoshi Tanaka, Yoshiki Tanaka, and Hiroshi Tsunemi.

January 2013
The Committee of Japan Physics Olympiad
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Chapter 1

General Physics

Elementary Problems

Problem 1.1. The SI and the cgs systems

The units of fundamental physical quantities, such as length, mass
and time, are called the fundamental units, from which the units
of other physical quantities are derived.

In the International System of Units (SI), the unit of length is
the meter (m), that of mass is the kilogram (kg) and that of time is
the second (s). Other units can be composed of these fundamental
units. For example, the unit of mass density is kg/m?, because the
unit of volume is m x m x m = m?3.

On the other hand, there are units composed of the gram (g), the
unit of mass; the centimeter (cm), the unit of length; and the second
(s), the unit of time. This system of units is called the cgs system
of units. In the cgs system, the unit of volume is cm? and the unit
of mass density is g/cm?.

The unit size in the SI is not the same as that in the cgs system.
For example, 1 m? in the SI unit is 10% cm? in the cgs unit.

How many times larger is the unit size in the SI as compared
with the unit size in the cgs system for each of the following physical
quantities?

Enter the appropriate numbers in the blanks below.

the unit of volume: 10% times a = @
(1) the unit of speed: 10% times i = D
(2) the unit of acceleration: 10/ times j = D
(3) the unit of force: 10* times k = |:|

3
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(4) the unit of energy: 10! times [ = D
(5) the unit of pressure: 10 times m = D
(the 1st Challenge)

Answer =2, =2, k=51=7,m=1
Solution

(1) The unit of speed in the SI is m/s. The unit size of speed in the
SIis 1m/s=1x 102 cm/s (because 1 m= 1 x 102 cm). Therefore,
it is 102 times the unit size of speed in the cgs system.

(2) The unit of the acceleration in the SI is m/s?. 1m/s?=1 x
10? cm/s%. Therefore, the answer is 10% times.

(3) Force is “(mass) x (acceleration)”, therefore the unit of force in
the SI is N=kg:m/s?. IN=1 x 103 g x 10? cm/s? = 10° g-cm /s>
=10°dyn (because 1kg=10%g). Therefore, the answer is 10°
times.

(4) Energy is “(force) x (distance)”, therefore the unit of energy in
the SI'is J=N-m. 1.J=10° dyn x10? cm = 107 erg. Therefore, the
answer is 107 times.

(5) Pressure is “(force)/(area)”, therefore the unit of pressure in the
SI is Pa=N/m?2. 1Pa=10°dyn/10* cm? =10dyn/cm?. There-
fore, the answer is 10 times. -

Problem 1.2. The pressure due to high heels and
elephants

Suppose the total weight of a person who wears high heels is 50 kg
and is carried only on the ends of both heels equally (assume the cross
section at the end of one heel to be 5cm?). Also, suppose the total
weight of an elephant is 4000 kg and is carried equally on the four
soles (assume the cross section of one sole to be 0.2m?). How many
times larger is the pressure exerted on one sole of the elephant
compared with the pressure exerted on the end of one heel of the
high heels?
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Choose the best answer from (a) through (f).

1 1 1
(a) %times (b) Etimes (c) 5times

(d) 5 times (e) 10 times (f) 20 times
(the 1st Challenge)

Answer (e)

Solution

It is important to express the units of physical quantities in the SI.
Let the gravitational acceleration be g. The person’s weight, 50 g,
is carried on the ends of both heels equally. Hence, the pressure

exerted on the end of one heel is py = % = 5 x 10*gPa

(because 5cm? = 5 x 1074 m?); the pressure exerted on one sole

of the elephant is pg = ig%gg = 5 x 103g Pa. Hence, the answer is

P = 10(times). [ |

Problem 1.3. The part of the iceberg above the sea

As shown in Fig. 1.1, an iceberg is floating in the sea. Find the ratio
of the volume of the part of the iceberg above the sea to the whole
volume of the iceberg. Here, the density of seawater is 1024 kg/m3
and the density of ice is 917kg/m?.

Choose the best answer from (a) through (f).
(a) 89.6% (b)88.3% (c) 52.8% (d)47.2% (e) 11.7% (f) 10.4%

(the 1st Challenge)
Answer (f)

Iceberg

Sea

Fig. 1.1.
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Solution

The buoyant force exerted on the iceberg is equal to the weight of
the seawater displaced by the iceberg.

Let the whole volume of the iceberg be V', the volume of the
seawater displaced by the iceberg be v, the density of seawater
be pS:1024kg/m3, the density of ice be pi:917kg/m3 and the
gravitational acceleration be g. Since the forces on the iceberg are
balanced, piVg = psvg.

Hence, the ratio of the volume of the part above the sea to the
whole volume of the iceberg is V‘;” =1l-y=1- % =1- %
0.104, i.e., 10.4%.

Supplement
The buoyancy on a body equals the resultant force
due to the pressure exerted by the surrounding fluid

The pressure on a body of volume V' due to its surrounding fluid
(whose density is p) acts perpendicularly to the boundary surface
between the body and the fluid (see Fig. 1.2(a)).

Since the fluid pressure at a deep location is greater than that
at a shallow location, the resultant force due to the pressure on the
boundary surface points upward. This resultant force is the buoyancy,
denoted as F', acting on the body.

Let us consider a region of fluid with the same volume V' as the
body (see Fig. 1.2(b)). The buoyancy, F, acting on this region is equal
to the force exerted vertically on the body by its surrounding fluid.

N RV S

(a) (b)

Fig. 1.2.
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Simultaneously, a gravitational force of pVg acts on this region of
volume V. Therefore, it turns out that the magnitude of the buoyancy
is given by F' = pVg due to the balance of the forces acting on the
region of the fluid of volume V.

For a body floating in a fluid, the magnitude of the
buoyancy acting on the body is equal to the magnitude of
the gravitational force on the fluid displaced by the part of
the body submerged in the fluid.

Problem 1.4. The altitude angle of the Sun

Suppose the length of the meridian from the North Pole to the
Equator is 10000 km. What is the difference between the altitude
angle of the Sun at Amagi-san in Izu and that in Niigata City, which
lies 334 km north of Amagi-san when the Sun crosses the meridian
that passes through both?

Choose the best answer from (a) through (f).

(a) 1° (b) 1.5° (c) 3° (d)4.5° (e) 6° (f) 12°
(the 1st Challenge)

Answer (c)

Hint At the instant when the Sun crosses the meridian, the difference
between the altitude angles of the Sun is equal to the difference
between the latitudes of the two locations.

Solution

Let angle 6 be the difference between the altitude angle at Amagi-
san and that at Niigata City. Let point A be Amagi-san, point N
be Niigata City and point O be the center of the Earth. We further
define the angle ZAON =0 (see Fig. 1.3).

The altitude angles of the Sun at points N and A at the instant
when the Sun crosses the meridian are equal to the angles between
the southern tangents to the Earth and the lines pointing toward the
Sun N—S and A—S, respectively (see Fig. 1.3). Hence, the difference
between the altitude angles at points A and N is ¢pp — ¢n = 0, where
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North Pole ,
—--"ﬁ-. /,
B 4
N o .- S
A \¢A
9 \
|
0 Equator
Fig. 1.3.

¢a and ¢n are the altitude angles of the Sun at points A and N,
respectively.

Given that the meridian length from the North Pole to the
Equator is 10000 km and the distance between Amagi-san and
Niigata City is 334 km,

334

0= °=3.0° ]
10000><90 3.0

Advanced Problems

Problem 1.5. Dimensional analysis and scale
transformation

I. Once the fundamental units, namely, the standard units in
length, mass and time, are specified, the units of any other
physical quantities can be determined in terms of (combinations
of) the fundamental units. Such a combination is called the
dimension of the physical quantity of concern. In an equation
that represents a relation between two physical quantities, the
dimensions on both sides of the equation must be the same. By
investigating dimensions, it is possible to examine the relation
between a physical quantity and other physical quantities, except
for some (dimensionless) numerical factor. This investigation is
called dimensional analysis.

We represent the dimension of mass by [M], the dimension of
length by [L] and the dimension of time by [T]. Then, we can study
some physical phenomena in terms of these dimensions.
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Suppose the speed of sound, v, is expressed as

vy = kp®p®, (1.1)

(k is a dimensionless coefficient; a and b are some numbers.).

in terms of atmospheric pressure, p, and density of air, p. Here, the
dimensions of vy, p and p are [v,] = [LT7Y], [p] = [(MLT~2)/L?] =
[ML='T~2] and [p] = [M/L?] = [ML~?], respectively. Such that the
equality of the dimensions on both sides of Eq. (1.1) is
[LT—l] — [ML—lT—Q]a[ML—3]b — [Ma+bL_a_3bT_2a].
Therefore,

0=a+b, 1=-a-3b, —1=—2a,

La=

1
and b= —5

N =

(1) Let’s consider the lift of an airplane.

We may model the wing of an airplane by a rectangular plane
of length W and width L. Suppose this airplane flies in the
atmosphere at a speed, v, relative to the atmosphere whose
density is p.

Since the lift on an airplane, F', is proportional to the length
of its wing, we may write

% = kp™’L°¢
(k is a dimensionless coefficient; a,b and ¢ are some numbers).

Find the values of indices a, b and ¢ by dimensional analysis.

(2) The airplane takes off with a speed of 250 km per hour, and flies

at a speed of 900 km per hour at an altitude of 10000 m. Suppose

the lift acting on the airplane at this altitude is equal to that at

the moment when the airplane takes off from the ground. Then,

estimate the ratio Z—é where p; is the density of the air at the
altitude of 10000 m and pg is the density on the ground.

II If a physical quantity is expressed in terms of powers of other

physical quantities, we can study physical laws under a scale

transformation. Now, suppose the scale of length is transformed
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as r — r1 = ar and the scale of time as t — t; = §t where «
and (3 are some numbers.
(3) Then, velocity, V, and acceleration, A, are transformed as

V—-Vi=a'FV and A— A =d"pA,

respectively. Find the numerical values of ¢, j, k and [.

(4) Let a miniature representation that has a scale factor of ﬁ
in length fall and record the state of affairs on a video. If the
acceleration is unchanged by the scale transformation, the state
of affairs looks real.

How fast should the playback speed of the videotape be as
compared with the original speed if we want the fall of the
miniature representation to look like that of the real object?

(the 2nd Challenge)

Solution

(1) [F] = [MLT2], [W] =[L], [o] = [ML™?], [v] = [LT "], [L] = [L]
Then
[MLT 2]
L]
[MT—Q] — [MaL—Sa-l—b-&-cT—b]'

= ML [LT~*[L)°,

Therefore,
l=a, 0=-3a+b+c, —2=-b,
wa=1 b=2 c=1
(2) From the result of part (1),

F
W kp'v?Lt.

Since the lift acting on the airplane at the altitude of 10000 m
equal that at the moment when the airplane takes off from the
ground, p o< v2

~ 0.077.

e 90072 (2501
" po 25072\ 900
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In this question, the number of significant digits is not
mentioned. In such a case, you should put your answer in 2 or 3
significant digits.

(3) Velocity is the rate of change of the position of an object, and
acceleration is the rate of change of the velocity of an object.
Therefore, V and A are transformed as V — V; = o8~V and
A — A; = af2A, respectively.

i=1, j=-1, k=1 1=-2.

(4) Since the acceleration of fall is unchanged by the scale transfor-
mation, 04/8_2 = 1. Since o = ﬁ, we have ﬂ = O(% = (ﬁ)%

In other words, the playback speed of the video should be 5

mi=-3~

times the original speed.

Problem 1.6. Why don’t clouds fall?

A cloud is a collection of water droplets that float in the atmosphere.
The diameters of the water droplets are about 3 um to 10 um (1 pm =
1x107%m). These water droplets are very small; their density is equal
to that of water but is much larger than that of the atmosphere.
Hence, it is a mystery how clouds float in the atmosphere.

Why don’t clouds fall? Also, how do water droplets in a cloud
fall as rain? Answer the following questions:

(1) Suppose a mass of air containing plenty of water vapor was made
in the atmosphere. Describe in about 80 words the process by
which this mass of air becomes a cloud in the sky.

(2) Describe in about 50 words why a cloud does not fall.

(3) Describe the process of the formation of rain in a cloud by
considering the relative motion between water droplets and the
air containing plenty of water vapor in the cloud.

(the 2nd Challenge)

Solution

(1) Because water vapor is less dense than the surrounding air,
the mass of the air containing plenty of water vapor rises
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upwards. As the mass of the air rises upwards, it expands
adiabatically (because pressure decreases as altitude increases)
and the temperature of the mass decreases. When the vapor
pressure exceeds the saturated vapor pressure, which decreases
as temperature decreases, a part of the water vapor condenses
and forms minute drops of water. Thus, a cloud is formed.

A cloud is made up of minute drops of water and water vapor.
Water vapor is less dense than air. However, after averaging the
densities of water droplets and water vapor, the density of a cloud
is equal to that of the air. As a result, a cloud does not fall.

In a cloud, the dense droplets of water descend and the less-
dense water vapor rises. In this relative motion, viscosity plays
an important role. The viscous force acting on droplets of water
is proportional to the product of the radius of the droplet and
its speed relative to the surrounding air (This is called Stokes’
law). It acts in the direction opposite to the velocity of the
droplet. In comparison, the weight of each droplet of water is
proportional to the cube of its radius. Hence, when the droplets
of water are small, their speeds relative to the water vapor is slow
and the droplets of water stay in the cloud; when the droplets
of water become large, their falling speeds become fast, and the

droplets of water rush out of the cloud and fall down as rain.
|

Supplement

In writing the answer above, we focus on the following:

e The air in a cloud is filled with minute drops of water and saturated
water vapor.

e Water vapor is less dense than air because the molecular weight
of a water molecule (H20) is 18 and is smaller than the aerial
“average molecular weight” of 29.

e When a volume of gas rises upwards, the surrounding atmospheric

pressure decreases. Since air hardly conducts heat, the ascending

gas adiabatically expands, and consequently, the temperature of

the gas decreases.
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e The saturated pressure of water vapor decreases as temperature
decreases. When the vapor pressure in the cloud exceeds the
saturated value, the vapor changes into liquid water.

Moreover, a detailed description of the process of enlargement of
the water droplets are as follows:

Because water droplets in the atmosphere easily acquire electrical
charges of the same sign, they are repelled from one another. As a
result, they do not combine with one another and become too large.
However, when the water droplets discharge their electrical charges
via thunderbolts, the repulsive forces between them disappear. They
can, then, combine and rapidly become large. And then, they fall as
rain drops. This is what happens in a thunderstorm.

A water droplet may absorb its surrounding water vapor and
grow larger. The rate at which water in the droplet vaporizes is large
when the water droplet is small, and it is possible that the water
droplet becomes smaller and disappears. However, once the radius
of the water droplet becomes larger than a certain critical value, the
water droplet grows rapidly as water vapor condenses on its surface.
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Chapter 2

Mechanics

Elementary Course
2.1. Motion with a Constant Acceleration

The rate of change of the displacement of a body with respect to time
is called the velocity of the body and the rate at which the velocity
of the body changes with respect to time is called the acceleration
of the body.

Suppose a body moves along the z-axis with a constant acceler-
ation, a. If the body has a velocity of v = vy at point x = x( at time
t = 0, the velocity, v, at time t is

v = vg + at. (2.1)

Figure 2.1 shows v as a function of ¢. From the fact that the
displacement travelled, Ax, during time interval At is vAf, it is
deduced that the displacement, x, at time ¢ is given by the area
of the shadowed trapezoid in Fig. 2.1. Thus, we find

1
l‘zxo—i-—[vo—l—(vo—l-at)] Xt

2
L o
= x0 + vot + §at . (2.2)
After eliminating ¢ from Eqs. (2.1) and (2.2), we obtain
v? —vE = 2a(z — x0). (2.3)
— dx

Example 2.1. Velocity, v, is defined as v = %7, a derivative of x with
respect to t, and acceleration, a, is defined as a = %. By integrating
these two expressions, derive Eqs. (2.1) and (2.2) for the case of

constant acceleration.

15
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e

Fig. 2.1.

Solution

When a is constant, integrating a = % with respect to t yields
v= /adt =at+ Cy, (Cj is an integral constant).

By using the initial condition v = vy at ¢ = 0, we have C| = vy.
Thus, we obtain Eq. (2.1).
Integrating v = ‘é—f with respect to t yields

1
T = /vdt = /(vg + at)dt = vot + 5cut2 + Oy,
(C4 is an integral constant).

By using the initial condition x = x¢ at t = 0, we have Cy = x.
Thus, we obtain Eq. (2.2). [ |

2.1.1. Projectile Motion

When air resistance is negligible, a body moves with the constant
acceleration due to gravity, ¢, which points in the downward
direction. In addition, it moves at a constant speed in the horizontal
direction, since no force acts on it horizontally. Thus, the body moves
in a parabolic path.

As shown in Fig. 2.2, we take the origin O to be a point on the
ground, = to be the displacement in the horizontal direction and y to
be the displacement in the vertical direction. Suppose a body moving
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Fig. 2.2.

at speed vy is launched at an angle, 6, to the z-axis at t = 0. The
coordinates (z,y) of the body at time ¢ are

1
r=1vgcosf-t, y=wvgsinf-t— §gt2.

After eliminating ¢ from these equations, we have

g 2

=gtanl — —————x~.
y 202 cos? 6

This equation implies that the body moves in a parabolic path.

2.2. Equation of Motion

When a force, f, acts on a body, the body has an acceleration,
a, proportional to the force. When we use % as the coefficient of

proportionality, we have (see Fig. 2.3)
1
a=—f & ma=f. (2.4)
m

Equation (2.4) is called the equation of motion. The equation of
motion is not derived from any other law: it is one of the fundamental
laws in Newtonian mechanics.
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2.3. The Law of Conservation of Energy
2.3.1. Work and Kinetic Energy

Suppose a body moves under the influence of a constant force
(Fig. 2.4). In vector notation, a force is denoted as f. When the
displacement vector of the body is denoted as 7, we define the work
done by the force, f, on the body as

W(i:eff-F:fTCOSQ. (2.5)
The product at the center of this equation is called the inner product
of f and 7 and its value is given by the rightmost expression, where
f and r are magnitudes of the vectors f and 7, respectively, and @ is
the angle between them.

We consider a body of mass m moving along the z-axis under
the influence of a constant force, f, and passing a point, z1, with
a velocity, vy, and then passing another point, xo, with another
velocity, ve, as shown in Fig. 2.5. In terms of acceleration, a, the
equation of motion is written as ma = f. Here, a is constant, because
f is a constant force. By setting o = x1, * = 2, v9g = v1 and v = v9
in Eq. (2.3), we obtain

vs — v} = 2a(xy — x1).

Fig. 2.4.

a

>
V| )
B O

} » X

X X
L, t

Fig. 2.5.
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After multiplying both sides of this equation by 5 and using the
equation of motion f = ma, we have

1 1
§mv§ - §mv% =ma(xy —x1) = f(x2 — 7). (2.6)
Given a body of mass m that moves at speed v, we call the

quantity K defined as

1
K §mv2, (2.7)

the kinetic energy of the body. The left side of Eq. (2.6) represents
the change in the kinetic energy during the motion from x; to o
and the rightmost expression is the work done during this motion.
Therefore, Eq. (2.6) is interpreted as

“the change in the kinetic energy of a body is equal
to the work done by the force on the body.” (2.8)

Although we derive Theorem (2.8) for a one-dimensional system
under the influence of a uniform force, by using vector algebra, the
theorem can be deduced from the equation of motion for the three-
dimensional motion of a body under the influence of a spatially
varying force.

Example 2.2. Suppose a body moves along the z-axis under the
influence of an z-dependent force. Derive Theorem (2.8) from the
equation of motion by integrating it.

Solution

Consider, again, the one-dimensional motion shown in Fig. 2.5, but
assume that the force acting on the body depends on z.
Substituting a = % into Eq. (2.4) yields

dv
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Then, multiply both sides of this equation by v = ”fi—f and integrate

it from t1 to to. After converting the integral variables, we have

2 d v 1 1
the left side = mv 2 dt = / mudv = —mv3 — =mu?,
t t v 2 2
2 dr x2
the right side = fadt = / fdx=W(x1 — x2).
t1 1

On the right side, fdz is the work done by f as the body travels
an infinitesimal displacement of dx. Hence, W(x; — x2) denotes
the work done by the varying force acting on the body during the
displacement from x1 to x9. By equating the above two expressions,
we obtain

L oo 1 o
gMuy — 5mvy = W(x1 — x2). (2.9)

Therefore, Theorem (2.8) is valid even for one-dimensional

motions with varying forces. [ |

2.3.2. Conservative Forces and Non-conservative Forces

In general, when the work done by a force as an object travels over
an arbitrary displacement depends only on the starting and ending
positions of the body, that force is called a conservative force.

Consider the one-dimensional motion of a body along the z-axis
under the influence of a constant force, f, that points to the positive
direction of the z-axis (see Fig. 2.5). The work done by f as the body
moves from x1 to zo (21 < x2) is

Wi(ry — x2) = f(22 — 21). (2.10)

Whereas when the body moves first from 27 to x3 (1 < 22 < x3)
and then from x3 to xs, the work done by f is

Wa(x1 — x2) = f(x3 — 21) + f(22 — 23)
= f(x2 —x1) = Wi(x1 — x2)
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As x3 is an arbitrary point, this relation implies that the
work done by a constant force is independent of the path taken
to travel from z; to zo and is determined only by the starting
and ending positions of the body. Therefore, a constant force f
is conservative. The gravitational and the elastic forces are two
examples of conservative forces.

A force that is not conservative is called a non-conservative
force. The work done by a non-conservative force on a body depends
on the path of motion as well as the initial and final positions of the
body.

An example of non-conservative force is the frictional force.
The direction of a kinetic-frictional force is always opposite to the
direction of motion, so the # in Eq. (2.5) should be set to 180°. Hence,
the work done by a kinetic-frictional force of a constant magnitude,
f’, as an object moves from 1 to o is

W{(l‘l — ."L‘g) = —f/(."L‘g — 1‘1).

On the other hand, suppose a solid body slides along the z-axis
first from 1 to x3 and then from x3 to x5 on a solid horizontal surface
with a kinetic-frictional force of a constant magnitude, f’. The first
displacement is x3—x1 and the second displacement is x9 —x3. Hence,
the work done to travel the total displacement from x; to xs is

Wo(z1 — x2) = —f'(x3 — x1) — (23 — 22)
== —f’(2{l)3 — 1 — ."L‘g) 7& W{({L‘l — 1‘2),

where we have used the fact that the work done by a kinetic-frictional
force is negative. This result implies that the work done by a kinetic-
frictional force depends on the path travelled: a kinetic-frictional
force is non-conservative.

2.3.3. Potential Energy

When a body moves from point P to point O under the action of a
conservative force, f, the work done by f, W(P — O), is determined
by both the positions of P and O. We define the potential energy



22 Physics Olympiad: Basic to Advanced Exercises

possessed by the body at P, U(P), as
UP)=w (P — 0). (2.11)

Note that the potential energy at P, U(P), depends on that at O,
which is called a reference point. Therefore, an arbitrary constant,
C, dependent on the choice of the reference point can be added to
the potential energy.

We cannot define a potential energy for any non-conservative
forces.

2.3.4. Ezxamples of Potential Enerqgy
Gravitational Potential Energy

We usually choose the ground as the reference point for defining the
gravitational potential energy of a body so that its value at a
height, hg, is equal to the work done by the gravity as the body
moves down from that height to the ground, as shown in Fig. 2.6.
The gravitational potential energy of a body is calculated in terms
of the gravitational acceleration, g:

0 ho
U(ho) = /h (—mg)dy = mg/o dy = mghy. (2.12)

0

Elastic Potential Energy

As shown in Fig. 2.7, a light spring with a spring constant of k is
fixed at the left end and a particle of mass m is attached to the right
end. They are constrained to move only along the x-axis. We take
the reference point for defining the potential energy of the particle

Fr777777777 =0

Fig. 2.6.
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r o kx m
e D @)
' + > X
0 X
Fig. 2.7.
F(x)
A
0 )fo > X
Ty ) S — '
F(x)=-kx
Fig. 2.8

to be the position where the spring does not exert an elastic force
on the particle. We choose this reference point to be the origin of
the z-axis and the x-axis to point to the right along the length of the
spring. The elastic force at a position, x, is F(x) = —kx. Then, the
elastic potential energy of the particle at = xq, U(x), is equal to
the work done by the elastic force of the spring as the particle moves
from z = xp to x =0, W(xg — 0). The value of W (zg — 0) is given
by the area of the shadowed triangle in Fig. 2.8. Thus, we obtain (see
Example 2.3)

e 1
Ulzo) € W(z — 0) = L (2.13)

So far, we employed the viewpoint that the elastic potential
energy is possessed by the particle connected to the spring. Instead,
it is possible to consider that the energy is stored in the deformed
spring. Its energy is called the elastic energy of the spring.
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Example 2.3. Derive Eq. (2.13) by integration.

Solution
From the equation F'(x) = —kx, we have

0

U(xg) = W(LUQ — O) = /

zo

x0 1
(—kx)dx = / kx dx = 5]4::0%
0

2.3.5. The Law of Conservation of Mechanical Energy

As illustrated in Fig. 2.9 with a reference point, x(, consider a body
of mass m moves along the z-axis under the action of a conservative
force, f. We denote the velocity at Pj(x = x1) as v; and the velocity
at Po(x = z2) as va. Then, Eq. (2.9) can be written as

1 5 1

g2 — §mv% =W(x1 — x2) = W(z1 — 22 — 20) — W(x2 — 20)

= U(.Cl)l) — U(I‘Q)

Hence, we have
L L
M2 +U(z2) = g™ + U(z1). (2.14)

This shows that the sum of the kinetic energy and the potential
energy at * = x9 is equal to that at * = ;. The sum of these
two energies is called the mechanical energy, and the equality
in Eq. (2.14) is called the law of conservation of mechanical
energy. So far, we only considered work and energies associated with
one-dimensional motions, but these quantities can also be defined

. m

5> o—f Y

' | — X
Py(x)) Py(xy)  O(xp)

Fig. 2.9.
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for three-dimensional motions. Consequently, various dynamical
processes in three-dimensional space can be analyzed using the law
of conservation of energy.

2.3.6. Energy Transfer between Interacting Bodies

The energy of a body is a measure of the ability of the body to do
work to other bodies. The kinetic energy of a body is the energy
that the body has as a result of its motion and the potential energy
of a body is the energy that the body has as a result of its position.

When a body exerts a force on another body and the force does
work, the mechanical energy of the former body decreases by the
same amount as the work done by the force, while the mechanical
energy of the latter body increases also by the same amount as the
work done by the force.

Example 2.4. Two bodies of masses mi and msy are joined by a
string that passes over a pulley (Fig. 2.10). At t = 0, the body of
mass mq passes point O rightward at a speed, vy, whereas the body
of mass ms passes point O’ upward at the same speed. We denote the

Vo

F
e 1 M
\Ij (@]

Fig. 2.10.
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acceleration of the body of mass mq as a, which is taken as positive
when directed to the right. We assume that ms is larger than m; so
that a has a negative value.

(1) Write the equations of motion for the two bodies, denoting the
magnitude of the tension in the string as F.

(2) Derive expressions for the coordinate and velocity of the body
m1 as a function of time, ¢t. Give an expression for F' in terms of
mi, me and g.

(3) What is the time, T, when the two bodies start to move in
the directions opposite to the velocities at ¢ = 07 What is the
distance, L, travelled by each of the two bodies at time T'7 Give
the expressions for 7" and L in term of my, ms, g and vyg.

(4) Show that the kinetic energy of the body of mass m; at t = 0
is converted to the work done to raise the body of mass mo by
distance L.

(5) Show that the work in the preceding problem is converted to the
mechanical energy of the body of mass mso after it is raised by
distance L.

Solution
(1) The equation of motion for the body of mass m; is
mia = —F.

If the acceleration of the body of mass ms is taken as positive
when directed upward, it is equal to a. Hence, the equation of
motion for the body of mass my is

moa = F — mag.

(2) From these two equations, we have

p=me (2.15)

mi + mgg’

and

m2

- q. 2.16
ml—i—mgg ( )
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We denote the velocity of the body of mass mq at time ¢ as
v1(t) and its displacement at time ¢ as x1(t). After substituting
Eq. (2.16) into Egs. (2.1) and (2.2) and using the initial condi-
tions v1(0) = vp and z1(0) = 0, we have

ma

v =v9 — ————gt, 2.17
1 0 m1+m29 ( )

=yt — ———gt~. 2.18
= 2m1+mgg ( )

Substituting v1 = 0 at ¢t = T into Eq. (2.17) yields

_my + ma Vg
ma2 g

T (2.19)

Substituting the above expression for 7" into ¢ on the right side
of Eq. (2.18) yields

def 1my + mo v}
L= T =-————. 2.20
o(T) = 5L (2.20)

The body of mass m; has a kinetic energy of %mlvg att =0
and loses this amount of kinetic energy during the time interval
T. At the same time, the work done by the tension in the string,
F', on the body of mass msy is FL. From Egs. (2.15) and (2.20),
this work is evaluated as

FL = UL qg- lml + mZﬁ = 1mlvg.
mi + meo 2 mo g 2

This is exactly equal to the kinetic energy of the body of mass
mq at t = 0. This fact can be interpreted as follows: the body
of mass mj has the ability to do work on the body of mass mao
through the string.
If we choose the position of the body of mass msy at t = 0 as the
reference point for defining the potential energy, its potential
energy at t = T is moglL = %(ml + mg)vd. Since this body
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has a kinetic energy of %mgvg at t = 0, the increment in the
mechanical energy of this body after it is raised by distance L
is %mlvg, which is equal to the work done by tension F' during
this motion. -

2.3.7. Work Done by Non-conservative Forces

In Fig. 2.11, suppose both a conservative force, f, and a non-
conservative force, f’, act on a body while the body moves from
point Py to point Py. Then, we cannot define any potential energy
for f’, and hence, the work done by f’, W', is not contained in the
mechanical energy of the body. As a result, we can write

1 1
5771@% - §mv% =W(z1 — @2) + W =Ul(21) - Ulzz) + W',

. <%mv% + U(arg)> _ (%mv% + U(a:l)) _—
(2.21)

This equation shows that

“the change in the mechanical energy of a body
is equal to the work done by the non-conservative
forces acting on the body” (2.22)

In other words, when a kinetic-frictional force acts on a body, the
mechanical energy of the body decreases by an amount equal to the
absolute value of the work done by the friction force.

I,
m
5 o—f D
' | — X
P,(x)) Py(xy)  O(xp)

Fig. 2.11.
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2.4. Newton’s Law of Universal Gravitation
and Kepler’s Laws

When we consider the motion of stars, we should apply the law of
universal gravitation. This law is derived from Kepler’s laws, which
are results of observation and are considered one of the fundamental
laws that we should keep in mind when discussing mechanical
problems.

2.4.1. Newton’s Law of Universal Gravitation

The gravitational force acting between two stars of masses M and m
separated by a distance, r, as shown in Fig. 2.12, is

Mm

F=-G—".

; (2.23)

The negative sign of the force implies that the force is attractive.
Here, the constant G = 6.67x 107! N-m? /kg? is called the universal
gravitational constant. Equation (2.23) is Newton’s law of
universal gravitation.

Fig. 2.12.

The law of universal gravitation is applied to a system of two
point masses. (Point mass is an ideal body in which its mass
is considered concentrated at its center.) The gravitational force
between two bodies with spherically symmetric mass distributions,
however, can be computed as though both bodies are point masses.
Hence, we use Eq. (2.23) when we calculate the gravitational force
between two stars, because the mass distributions of stars are usually
spherically symmetric.

2.4.2. Gravitational Potential Energy

Suppose star A of mass m is at a distance, rq, from star B of mass M.
When the reference point for defining of the gravitational potential
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»
»

Fig. 2.13.

energy of star A is taken to be a point at infinity, its gravitational
potential energy is equal to the work done by the gravitational force
when star A moves from its location (that is at distance ry from
star B) to infinity, W (rg — o0). Its gravitational potential energy at
position 79, U(rp), is given by the negative of the shadowed area sur-
rounded by the curve F' = -G %, the r-axis and the vertical line r =
ro in Fig. 2.13. By the method of integration, we calculate the area as
Mm

U(ro) = =G=—=. (2.24)

Example 2.5. Derive Eq. (2.24).

Solution

After integrating the gravitational force given by Eq. (2.23) from 7
to oo, we have

Ul(ro) def W(rg — o0) = / <—G@> dr = —GMm/ %
T To

0

= —GMm [—1} :—GMm. m
r o To

2.4.3. Kepler’s Law

Kepler’s law is a set of the following three empirical laws.

Kepler’s first law: Every planet moves in an elliptical orbit
that has the Sun at one of its foci.
Kepler’s second law: A line from the Sun to a planet sweeps out
equal areas during equal intervals of times
(Fig. 2.14).
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Fig. 2.14.

Kepler’s third law: The square of the period of a planet is
proportional to the cube of the semi-major
axis of its elliptical orbit (Fig. 2.14).

Elementary Problems

Problem 2.1. A ball falling from a bicycle

Andy who is riding a bicycle drops a ball while keeping his arm at
rest. Betty who is standing on the ground watches it. Choose from
(a) through (e) in Fig. 2.15 the best path for the trajectory of the
ball as seen by Betty.

(the 1st Challenge)

Betty

Fig. 2.15.
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Answer (a)
Hint The falling ball has the same initial velocity as Andy.

Solution

Just after Andy drops a ball while keeping his arm at rest, the ball
has the same velocity in the horizontal direction as the bicycle. If
air resistance is negligible, the ball moves at the initial velocity
horizontally in the forward direction. In the vertical direction,
the ball falls freely at an initial velocity of zero with a constant
gravitational acceleration of g. As a result, Betty observes that
the ball falls along a parabolic trajectory in the forward direction
like (a). |

Problem 2.2. A ball thrown off a cliff

Suppose a ball is thrown off a cliff with the same initial speed, vg, in
the following three manners (see Fig. 2.16):

A. The ball is thrown upward.
B. The ball is thrown horizontally.
C. The ball is thrown downward.

v, |
The top 0 l_li] B
of a cliff v T

C

Oly

fo}
l Ground (\
v v

c U, B
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Here, va, vg and ve denote the speeds of the ball at the moment
when it reaches the ground in cases A, B and C, respectively. Choose
from the following (a) through (f) the best relation between va, v,
and vc, assuming that air resistance is negligible.

(a) va > v >vc (b)) vgc >wvp >wva (c) v > vA > vC
(d) ve >va >vp (e) va =vc >wvp (f) va =vB =vc
(the 1st Challenge)

Answer (f)

Hint Refer to the law of conservation of mechanical energy.

Solution

Let the height of the cliff from the ground be h and the gravitational
acceleration be g. Let us take the horizontal axis to be the x-axis
and the vertical axis to be the y-axis.

A: The ball moves in a straight line along the y-axis with a
gravitational acceleration of g. The y-component of its velocity at
the instant it reaches the ground is denoted by —wva. By setting
v=—vp,a=—g, =0 and xg = h in Eq. (2.3), we obtain

VA = \/vg—l—Zgh.

C: Motion in case C is different from that in case A in the sign of the
initial velocity and in the notation of the final velocity. Replacing
va with ve as well as vg with —vg in the preceding equation yields

ve = 4/ v + 2gh.

B: The velocity vector of the ball at the instant when it reaches the
ground is denoted by (vBg,vBy). Since the horizontal motion is
uniform, we have vg; = vg. The vertical motion is a free fall with
an initial velocity of zero and is different from the linear motion
in case C in the direction of the initial velocity. Replacing vy and
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ve in the preceding equation with 0 and —wp,, respectively, we
obtain

UBy = —V/ 2gh.

Hence, we obtain

UB = ,/v%x—l—v%y = \/vd + 2gh.

From the above, we have

VA = VB = UC.

Alternative solution

In all of the three cases, the ball is initially located at the same height,
h, and moving at the same speed, vy. Using the law of conservation
of energy, we get the velocity of the ball, v, at the instant it reaches
the ground for each of the cases as follows:

1 1
§mv2 = §mv§ +mgh .. v =/v}+2gh.
Therefore, we obtain va = vg = v¢. [ ]

Problem 2.3. The trajectory of a ball

Suppose air resistance is negligible, consider the motion of two
identical balls that are simultaneously thrown with the same initial
speed toward targets 1 and 2, respectively, as shown in Fig. 2.17.
Choose from (a) through (d) the best statement about their motion.

(a) The ball thrown toward target 1 gets to its target earlier than
the other ball does.

(b) The ball thrown toward target 2 gets to its target earlier than
the other ball does.

(c) Both the balls get to their targets simultaneously.

(d) Which ball gets to its target earlier depends on the initial speed
of the two balls.

(the 1st Challenge)
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Fig. 2.17.

Answer (a)

Hint Consider the time taken for a ball to come back to the
horizontal plane on which the ball is thrown.

Solution

Let vg be the initial speed and 6 be the angle between the initial
velocity and the horizontal plane. We take the vertical axis to be
the y-axis. If the ball is shot from a point at y = 0 at ¢t = 0, the
y-coordinate of the ball at time ¢ is

1
y =vpsinf -t — §gt2.

Since the both targets are located on the same horizontal plane as
the initial position, we set y = 0 in the preceding equation to obtain
the time taken to reach the targets as

‘= 2vq sin 6
P

This formula implies that the time taken decreases as the shooting
angle, 0, decreases. [ |
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Problem 2.4. The motion of a train

The speed, v, of a train that travels between two stations (A and
B) connected by a straight railway is plotted as a function of ¢
in Fig. 2.18. The train starts from A at ¢ = 0 with a constant
acceleration of «. It slows down after ¢t = ¢, with a constant
acceleration of 3(< 0), and at ¢t = T', it stops at station B. Fill the
boxes [a] through | j|in the following description about the motion of
the train with the appropriate numbers or mathematical expressions.

Since the train is in uniform acceleration until ¢ = ¢,,, the velocity
of the train before ¢, can be written in terms of o and ¢ as

v =[a) (2.25)

To determine the time dependence of the velocity after ¢t = ¢,
the velocity is written as

v=pt+c (2.26)

Since the values of v calculated by Eqgs. (2.25) and (2.26) should be
the same at t = t,,, the constant c is

c:@xtm.

Hence, the velocity after ¢t = ¢, is

v =Bt —tm) +[c] (2.27)

v
~

Fig. 2.18.
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Using this expression, we can determine the time required for the
train to arrive at B,T. From (2.27), we find in terms of o and 3 the
relation between t,, and T as

tm =[d]x T. (2.28)

Let s denote the distance between station A and the train. Derive
an expression for s as a function of ¢. When ¢ is less than ty,, s
increases with t as follows:

s =[e] (2.29)

Whereas, the distance after ¢t = ¢, is

s =[f]x (t — tm)? +[g] ¥ (t — tm) + d, (2.30)

where d is a constant determined below.
Since the values of s calculated from Egs. (2.29) and (2.30) should
be the same at t = t,;,, the constant d is

d=[n]

Let L denote the distance between the two stations. Then, we find
in terms of a and 3 the relation between L and T2 from Egs. (2.28)
and (2.30) as

L .
72 = [i]. (2.31)

Suppose the distance between A and B is L = 1.8 km and the train
travels with accelerations o = 0.20m/s? and 3 = —0.80 m/s?, then,
time 7' is | j | seconds.

Answer
1
a=at, b=a—-08, c=aln, d:ﬁfof e:§at2,
1 1 af
f=— =at h=_-at?, i=_-——"—, j=150.
2/87 g amJ 20{ m? 1 Q(ﬁ—a)’ .]

Hint Refer to Egs. (2.1) and (2.2), which hold for linear motions
each with a constant acceleration.
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Solution
b: Since the values of v at t = t,, evaluated by Egs. (2.25) and
(2.26) should be the same, we have
atym = Ptm +c¢ cc=(a— [)tn.
c: Substituting the above expression for ¢ into Eq. (2.26) yields
v =Pt + (o= B)tm = B(t — tm) + atm.
d: Since the train stops at t = T, it means at,, + 5(T — t) = 0.
It follows that
p
tm = T. 2.28
f, g: Since the velocity at ¢t = t,, is at, and the acceleration for
t >ty is 3, distance s is
1
s=58x(t- tm)? + atm(t — tm) + d, (2.30)
where d is the distance between station A and the train at
t =ty
i: After setting ¢ = 7" in Eq. (2.30), we have
1 1
L=50(T - tm)? + ot (T — ) + §atfn.
Substituting Eq. (2.28) into this equation yields
L af
—_ = 2.31
T 2(8—a) (2:31)
j: Substituting the given values of o, # and L into Eq. (2.31) yields

8- 50

T=1\""03 150
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Problem 2.5. Skydiving

Suppose a group of individuals who are freely falling down performs
a skydiving stunt. These skydivers jump off an aircraft individually
and meet together in the sky. In this problem, we consider how a
skydiver, A, catches up with another skydiver, B, who was initially
below A. Notice that the air resistance on a body increases with its
speed in air. For each of the following questions, choose the best
answer from (a) through (d).

(1) Which of the following is the most appropriate description about
the speed or the acceleration of a skydiver?

(a)

As soon as a skydiver leaves the aircraft, his speed is kept
constant by air resistance.

The acceleration of a skydiver is kept constant by air
resistance.

The acceleration of a skydiver increases during his fall
whether air resistance acts on him.

The speed of fall approaches a terminal constant value due
to air resistance.

What should skydiver A do in order to catch up with skydiver B?

(a)

The higher skydiver A should hunch his body in order to
increase the gravitational force acting on him.

The higher skydiver A should stretch out his body in order
to increase the gravitational force acting on him.

The higher skydiver A should hunch his body in order to
reduce the air resistance acting on him.

The higher skydiver A should stretch out his body in order
to reduce the air resistance acting on him.

After the performance, each skydiver returns to the ground
with a parachute. What is the direction of his acceleration
immediately after his parachute opens?

(a)
(b)

Upward
Downward
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(c) Downward if his speed of fall is large enough
(d) No acceleration

(the 1st Challenge)
Answer (1) (d), (2) (¢), (3) (a)

Hint Sometime after, the speed of a person who is falling in the
presence of air resistance approaches a constant value called the
terminal velocity. The terminal velocity increases with a decrease
in air resistance, and it decreases with an increase in air resistance.

Solution

(1) A skydiver who is falling in the sky experiences an air resistance
in the direction opposite to the velocity. Suppose the magnitude
of the resistance is proportional to the speed of the skydiver,
v, and the constant of proportionality is k(>0). In terms of the
mass of the skydiver, m, his downward acceleration, a, and the
gravitational acceleration, g, the equation of motion is

ma = mg — kv. (2.32)

(see Fig. 2.19). Since v = 0 initially, it follows from Eq. (2.32)
that a = g¢g. As the speed of fall increases, the acceleration
decreases and approaches zero. As a result, the speed approaches
the constant value vg = %Z. After the skydiver leaves the aircraft
at t = 0, his speed, v, changes with ¢ as shown in Fig. 2.20.

kv
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0 »
Uy [
v
v
Fig. 2.20.
0 t 4
B
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v
v
Fig. 2.21.

If skydiver A changes his posture so that the air resistance
he experiences decreases, the constant of proportionality, k,
becomes smaller. Hence, the speed of skydiver A becomes larger
than that of skydiver B as shown in Fig. 2.21, and consequently,
skydiver A catches up to skydiver B at time ¢.

Suppose a skydiver falls at a constant speed, vy, when he
opens his parachute at ¢t = {¢y3. Immediately after, the air
resistance he experiences increases abruptly and his acceleration
can be calculated from an equation of motion in which the k in
Eq. (2.32) is replaced by a larger constant, k;. A long time after,
the speed of the skydiver approaches a new terminal velocity
v1 = 72(<wvp) as shown in Fig. 2.22, whose curve implies that
after t = ty, the acceleration of the skydiver becomes upward,
and that his speed decreases. u
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0k >t

Fig. 2.22.

Supplement
(1) Substituting a = d—” and vy = 52 into Eq. (2.23), we have

mz—z = —k(v —vp).

This is an example of a differential equation that can be solved
by separation of variables as follows.

We first remove the factor v — vy to the left-hand side and

integrate both sides with respect to ¢:

[t = [ s [ dt.
’U—Uodt 1)—’1)0

After performing the integration, we obtain

k
log |[v — vg| = —Et—FC,

where C'is an arbitrary constant. Since the left-hand side of this
equation diverges at v = vg, the value of v — vy cannot be zero
and thus cannot change its sign over time. When the motion
begins with v = 0 at ¢ = 0, v is smaller than vo(v < vg) forever.
Hence, we have

_k
vg—v:ec-e mt,

¢ — yg and obtain

From the initial condition, we have e
v=19(l—e mt).

v is plotted as a function of ¢ in Fig. 2.20.
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(3) The skydiver opens his parachute at t = t( after the performance.
The equation of motion of the skydiver for ¢ > ¢ is

dv

ma =mg — kv = —kq <v — @> = —ki(v—v1).

k1

The increase in the air resistance he experiences means k1 > kg
and, accordingly, v1 < vg. Since the new motion begins with the
initial condition, v = wvg(>v1),v — vy is positive at all times.
Hence, we have

R
v—v =e" e mt

From the initial condition v = vy at t = tg, we have eC = (vo—

k
vl)eﬁlto. Substituting this into the above equation, we obtain
k
v="uv1 + (vg — vl)e_ﬁl(t_t‘)),
which holds for ¢ > ty. This equation implies that v tends to vq
as t goes to infinity. v is plotted as a function of ¢ in Fig. 2.22.

Problem 2.6. Small objects sliding on different
descendent paths

Two paths (A and B) are shown in Fig. 2.23. The heights of the
starting points of the two paths are the same, as are those of their
ending points, and the horizontal distance, I, between the starting
and ending points is the same for both paths. Each path involves
different slopes. Suppose two identical objects are placed at the

Starting point Starting point
i Goal i Goal
< l > l
Path A Path B

Fig. 2.23.
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starting points of the two paths and begin to slide simultaneously.
Choose from the following (a) through (d) the best statement about
the motion of the two objects. Ignore any friction on the objects and
assume that the objects are always in contact with the slopes.

(a) Since the object is accelerated twice in path A, the object in
path A arrives at the goal earlier.

(b) After the object descends the first slope, the speed of the object
in path B is larger than that in path A. Hence, the object in
path B arrives at the goal earlier.

(c) Since both distances between the starting point and the goal are
the same, the objects arrive at the goals simultaneously.

(d) Since the heights of the starting points and of the goals are the
same in both paths A and B, the objects in both paths arrive at
their goals simultaneously.

(the 1st Challenge)

Answer (b)

Hint The object that travels a longer distance at a faster speed
arrives at the goal first.

Solution

An object gains a larger speed as the vertical distance of fall from
the starting point becomes larger. Hence, the object that drops a
longer distance gets a larger speed and, consequently, arrives at the
goal first. [ |

Problem 2.7. An inclined plane

A ball is placed at the top of an inclined plane (of height h) as shown
in Fig. 2.24, and it starts moving down. We consider the motion of
the ball in the following two cases:

A. The ball slides down without rolling on a frictionless plane.
B. The ball rolls down without sliding on a plane with friction.
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Fig. 2.24.

Choose from the following (a) through (d) the best statement
about the time taken for the ball to reach the ground.

(a) The ball in case A reaches the ground in a shorter time than that
in case B because the ball falls down without lossing mechanical
energy.

(b) The ball in case B reaches the ground in a shorter time than that
in case A because the ball falls down with rotational energy.

(c) Both balls reach the ground at the same time because of the law
of conservation of energy. (The heights of the starting points in
both cases are the same, as are the heights of the goals.)

(d) The ball in case A reaches the ground in a shorter time than
that in case B because all of the potential energy of the ball
is converted into kinetic energy due to its translational motion
without being converted into rotational energy.

(the 1st Challenge)

Answer (d)

Hint When the ball rotates, part of its potential energy is converted
into rotational energy.

Solution

When the ball falls down, its gravitational potential energy is
converted into translational kinetic energy and rotational energy. If
there is friction, the ball rotates; whereas in the frictionless case, the
ball does not rotate. If there is no rotation, there is no rotational
energy. So, in case A, all of the potential energy of the ball is
converted into translational kinetic energy and the speed of the ball
becomes larger. [ ]
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Problem 2.8. A space probe launched to converge
with the orbit of Pluto

Celestial bodies that are farther than Neptune and are classified as
dwarf planets have been found, in addition to Pluto. We consider
a space probe that is launched to the neighborhood of the orbit of
Pluto. In the following discussion, it should be noted that all objects,
including planets, revolving around the Sun obey Kepler’s laws.

(1) In accurate terms, the orbit of the Earth is an ellipse, but it is
approximately a circle.
The radius of this circle is the astronomical unit. Pluto’s semi-
major axis is about 40 astronomical units. What is Pluto’s orbital
period? Choose the best values from the following (a) through

(£).
(a) 10 years  (b) 40 years (c) 180 years
(d) 250 years (e) 640 years (f) 1600 years
(2) We launch the space probe at a speed larger than that of the
Earth, in the direction tangent to the orbit of the Earth, as

shown in Fig. 2.25. After being launched, the probe moves in
an elliptical orbit such that its nearest point to the Sun is also a

Pluto's orbit

Earth's orbit

Space probe's orbit

Fig. 2.25.
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point on the orbit of the Earth. As shown in Fig. 2.25, if the semi-
major axis of orbit of the space probe is about 20 astronomical
units, its farthest point from the Sun in the orbit is near the
orbit of Pluto. In this case, how many years does it take for this
space probe to travel from the Earth to the neighborhood of the
orbit of Pluto? Choose the best value from (a) through (f).

(a) 5 years  (b) 30 years (c) 45 years
(d) 60 years (e) 90 years (f) 120 years

Since the orbit of the space probe is an ellipse, the probe will
come back to the neighborhood of the Earth after some time.
Although the gravitational force due to the Sun, which decreases
as the distance from the Sun increases, is very weak near Pluto’s
orbit, it can draw the space probe back to the neighborhood of
the Earth. How can we explain the dynamics of this motion? Fill
the following boxes [a] through @ with the appropriate words,
numbers or mathematical expressions.

If the space probe moves around the Sun at the same speed
as that of the FEarth, the gravitational force on the probe, Fg,
balances with the centrifugal force, Fio. However, we launch the
space probe at w1, a speed larger than that of the Earth, in
the direction tangent to the orbit of the Earth. Just after the
launch, Fo exceeds Fg(Fo > Fg), and consequently, the space
probe moves away from the Sun.

We resolve the velocity vector of the space probe at a distance,
r, from the Sun, ¥ = %,
component perpendicular to the radius, vy (Fig. 2.26). Kepler’s
second law can be written in terms of r and vy as

into its radial component, v,, and its

[a]=Fk (constant).

Now, by assuming the probe is in circular motion with a radius
of r and with a speed of vy, we can describe the centrifugal force
on the space probe of mass m as

Fo=m-—*>
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Sun

Fig. 2.26.

After eliminating vy from the expression for F, we obtain the
centrifugal force in terms of k as

Fo =[b]

Therefore, the magnitude of the centrifugal force is inversely
proportional to the power of r.

Since the magnitude of the gravitational force is inversely
proportional to the @ power of r, the centrifugal force decreases
faster than the gravitational force as r increases.

When the centrifugal force becomes equal to the gravitational
force (Fo = Fg), the radial component of the velocity, vy, is
still positive, that is, in the direction pointing away from the
Sun, and hence, the space probe is moving away from the Sun.
Immediately after, the centrifugal force becomes smaller than the
gravitational force (Fo < Fg). Hence, the radial component of
the acceleration becomes negative, and v, decreases. If the initial
velocity of the space probe, vy, is not large enough, v, vanishes
in a while, and then, the space probe begins to move toward
the Sun.

If the initial velocity of the space probe, vy, is large enough, the
space probe escapes from the solar system. Let us discuss the
space probe in that situation in terms of its mechanical energy.
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When a space probe is at a distance, r, from the Sun, the
potential energy associated with the gravitational force exerted
by the Sun is

v gl
r
where M denotes the mass of the Sun and G denotes the
gravitational constant. Hence, when the space probe moves
around the Sun in the Earth’s orbit, its mechanical energy is
E = 1mvg -G @
2 To

where vg is the orbital speed of the Earth and rq is the orbital
radius of the Earth. How many times larger is the initial speed,
v1, required for the space probe to escape the solar system as
compared with the speed vy? Write down in detail how you derive
your answer.

(5) There is a nest of comets known as “the Oort cloud” outside
Pluto’s orbit. A comet shot out from this nest comes close to the
Sun but passes over the Sun without colliding it.

In the neighborhood of the Sun, the attractive gravitational
force on the comet is very strong. Meanwhile, the comet has
a lot of kinetic energy converted from its potential energy. By
referring to the statements of (3), explain why the comet moves
away from the Sun.

(the 1st Challenge)

Answer (1) (d), (2) (c)

(3) a=3Srvgorryy b = 4’;'}3’“2 or "}q—’f ¢ =3rd d =2nd

(4) As long as the mechanical energy of the space probe, F, is not
negative, namely, I > 0, it can escape the solar system. When
the space probe moves around the Sun in the Earth’s orbit, its
equation of motion

m-2 = G=". (2.33)
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On the other hand, when the space probe has an initial velocity
of vy, its mechanical energy is

_gMm

1
E = Emv% (2.34)

70

With Egs. (2.33) and (2.34) and the condition £ > 0,

E = 1mv% —mvg >0 o > /2 (times).

2 Vo
The magnitude of the gravitational force is inversely proportional
to the square of r, the magnitude of the radius vector, and the
magnitude of centrifugal force is inversely proportional to the
cube of r. Hence, when the comet comes close to the Sun, r
becomes small, and consequently, the centrifugal force becomes
larger than the gravitational force. Hence, the comet moves away
from the Sun.

Solution

(1)

Let the orbital radius of the Earth be R = 1 (astronomical
unit), the orbital period of the Earth be T = 1 (year), the semi-
major axis of Pluto’s orbit be Rp = 40 (astronomical unit) and
the orbital period of Pluto be Tp (year). Then, from Kepler’s
third law
w1
Ry R
we derive Tp =~ 253 (year).
Let the semi-major axis of the space probe’s orbit be Ry = 20
(astronomical unit) and the orbital period of the space probe be

T2 .
RF = 1, and we derive
Ti ~ 89.4 (year). Hence, the required time is % = 44.7 (year).

As shown in Fig. 2.26, the motion of the space probe can be
decomposed into a radial motion and a circular motion (of radius

T1 (year). Then, from Kepler’s third law

2
r[= |7]] and of speed vp). Note that a the centrifugal force of m=2
and a gravitational force of —G M?@ (the negative sign implies the
force is attractive) act on the space probe in the radial direction.
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The centrifugal force can be derived by the formulation of the
motion in terms of energies.

We take the reference point for defining the gravitational
potential energy to be a point at infinity. The mechanical energy
of the space probe, E, can be described as

1 M
E = §m(vf+v§) - Ghim ~

From Kepler’s second law, the relation between r and vy
becomes

1
37 = k = constant. (2.35)

Hence, E can be described as
1
E = §mv3 + Ue(r)
B 2mk?  GMm

Uelr) = =5 . (2.36)

The total mechanical energy is expressed as the sum of
the kinetic energy in the radial direction and the effective
potential energy, U.(r). In general, a conservative force acting
on an object points from a location of higher potential energy to
one of lower potential energy, and its magnitude is given by the
gradient of the potential energy. Thus, the force acting on the
space probe in the radial direction, F', is

aU. Amk?  GMm

=% .
dr 73 72

(2.37)

Now, using Eq. (2.35), we rewrite the rightmost term of
Eq. (2.37) to obtain

B mvg B GMm

F
r r2

This equation shows that the centrifugal force acting on the

2
space probe in the direction of increasing r is % = ‘”;‘—3]"’2
the gravitational force acting on it in the direction of decreasing

ris G%m.

and
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We can comprehend the motion of the space probe by com-
paring the centrifugal force with the gravitational force.

Advanced Course

In the following advanced course, we write symbols representing
vector in boldface italic type. Moreover, dotted symbols above a

physical quantity represent its derivatives with respect to time. For

S . 2 .
example, we write a as a, ‘é—f as &, and % as .

2.5. Conservation of Momentum
2.5.1. Momentum and Impulse

Suppose a particle of mass m moves along the z-axis. Under the
influence of a force, f, the equation of motion of the particle is

dv
— = 2.38
mi (2.35)

where ‘é—;’ is the acceleration of the particle. By integrating Eq. (2.38)
with respect to time ¢ from ¢; (at this time, the velocity of the particle
is v1) to to (at this time, the velocity of the particle is vy), we get

to d’U to V2 to
m —dt:/ fdt:>m/ dv:/ fdt.
t dt t1 v1 t1

Furthermore, by replacing fttf fdt by I, we have
muvg — muy = 1. (2.39)

Here, the product of the particle’s mass and velocity, and I are called
momentum and impulse, respectively. Equation (2.39) implies
that

“ the change in the momentum of a particle is

equal to the applied impulse” (2.40)
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2.5.2. The Law of Conservation of Momentum

Suppose particle 1 with a mass of m; and particle 2 with a mass of
my each exerts a force on the other; this pair of forces is of the same
magnitude, f, (but is opposite in direction). Such forces are called
internal forces. At time ¢1, particles 1 and 2 have velocities v1 and
vg, respectively, and at time ta, a later time, they have velocities v}
and v}, respectively (Fig. 2.27). Suppose no forces act on the particles
by the surroundings. (Forces acting on them by the surroundings are
called external forces.) When an impulse, I, acts on particle 1,
there is another impulse, —1, acting on particle 2 (this is called the
law of action-reaction):

mv) —muy =1, mvh —muvg = —1.
The above equations yield
mu| + muy = muy + mus. (2.41)

Equation (2.41) shows that the total momentum is constant. This
relation is called the law of conservation of momentum.

If an external impulse, I’, is applied to particles 1 and 2, which
exert internal forces on each other, Eq. (2.41) have to be modified to

(mvy +muy) — (moy +mug) = I'. (2.42)
Equation (2.42) shows that

“the change in the total momentum of a system
is equal to the impulse applied on the system
by external forces” (2.43)

mo oy m, v,

O—  O— t=1
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2.6. Moment of Force and Angular Momentum

As shown in Fig. 2.28, we represent the position of point P, an
arbitrary point on a rigid body, by r(|r| = r), a vector pointing from
point O (a fixed point) to point P and called the position vector
of point P. Suppose force, f(|f| = f), acts on a point mass at P.
Then, the moment of force about O, m, is defined as the following
vector product:

m ¥ rx . (2.44)

Therefore, the magnitude of m (the magnitude of the vector product
r X f) is equal to the area of the parallelogram formed by r and f,
and it is given by rf sin 6. Here, 0 (0 < 6 < ) is the angle between r
and f. The moment of force, m, is perpendicular to the plane that
contains the parallelogram, and is parallel to the direction in which
a right-handed screw that rotates from the direction of r to that
of f advances. If r is pointing in the direction of the z-axis and f
is pointing in the direction of the y-axis, then m is pointing in the
direction of the z-axis.

The magnitude of a vector product of two vectors A and B is
maximum when A and B are perpendicular to each other (AL B),
and it is zero when they are parallel (A||B). If the components of
A and B are given by A = (A;,A4y,A.) and B = (B,, By, B.),

Fig. 2.28.
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respectively, the vector product A x B is

Ax B=(A,B, - A,By, A,B, — A, B, A, B, — A, B,)

(|4, B,| |A. B.| |A. B,
~\|4. B.|’ |4, B, |A, B,

I 9

). (2.45)

Here, |7 3| = ad—bc is called the determinant of the matrix (; ).

Example 2.6. Derive the components of the vector product in
Eq. (2.45) by using the distributive law for the vector product in
terms of three vectors (namely, a,b and c¢):

(a+b)xc=axc+bxe (2.46)

Solution

We define ,j5 and k as the unit vectors, which are vectors each
having a magnitude of unity, in the directions of the positive x-, y-
and z-axes, respectively. Then, vectors A = (A;,A,,A;) and B =
(Bz, By, B.) are represented as

A=Ayi+Ayj+ Ak, B= B+ B,j+B.k.

Here, we use the distributive law (2.46) and the following equations
about the vector products between the unit vectors:

tXx1=3x3=kxk=0,
i1xj=k, jgxk=1i, kxi=37,
Jxt=—-k, kxj=-—1 i1xk=-—j.

Then, Eq. (2.45) is derived as follows:

Ax B = (Ayi+ Ayj+ Ak) x (Byi+ Byj + B.k)
= (AyB, — A,By)i+ (A,B, — A, B.)j + (A, B, — Ay B, )k.
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When a particle is at a position, r, and has a momentum, p, the
angular momentum of the particle, I, is defined as

1Y % p. (2.47)

Here, [ is a vector perpendicular to the plane containing r and p.
The derivative of the angular momentum, %, is equal to the

moment of force, m:

dl
— =m. 2.48
T=m (2.48)

Example 2.7. Derive Eq. (2.48).

Solution

By differentiating Eq. (2.47), we obtain

a_dr i P
at at *P dt’

Since we can conclude ‘é—;’Hp from (fi_:; = v and p x v, the first

term in the right-hand side of the above equation is equal to zero.
Furthermore, the second term becomes r X f = m because of the
equation of motion ‘fi—t = f (the derivative of p = mwv). Hence, we
get Eq. (2.48). |

2.7. The Keplerian Motion

We consider the motion of a body under the action of an universal
gravitational force due to another body (this motion is called the
Keplerian motion).

2.7.1. Two-Dimensional Polar Coordinates

We express the components of a two-dimensional position vector, r,
in terms of r, the magnitude of r, and ¢, the angle between r and
the z-axis (Fig. 2.29). Then, (r,¢) is called the two-dimensional
polar coordinates of r.
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Yy
A
y -------- 1
r i
4 ! > x
(@) X
Fig. 2.29

The relation between two-dimensional polar coordinates (r,¢)
and two-dimensional rectangular coordinates (z,y) is

r=rcos¢, y=rsing.

In order to represent the x-component and the y-component of
a velocity vector, v, where are denoted as v, and v,, respectively, in
terms of two-dimensional polar coordinates, (r,¢), we differentiate
the above equations:

Vg = & = T cos ¢ — r¢sin @, vy =1 = Fsing +rdcosd.  (2.49)

We introduce the component of the velocity vector v in the
direction of r (called the r-component of v and denoted as v,) and
the component perpendicular to r (called the ¢-component of v and
denoted as vg).

As shown in Fig. 2.30, the z- and y-components of v are expressed
in terms of v, and vy as

Uz = UpCOS @ — Vg SIN@P, vy = v, 8iN @ + vy COS P. (2.50)
Comparing Eq. (2.49) with Eq. (2.50), we have
v =7, vy =T (2.51)
Furthermore, the derivatives of Eq. (2.49) give the z- and y-
components of the acceleration:
az = (F — rd?) cos ¢ — (27¢ + r¢) sin ¢,
ay = (i — r¢?) sin ¢ + (27 + rd) cos ¢.
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Fig. 2.30.

The following consideration is similar to the case of velocity. We
write the r- and the ¢-components of the acceleration as a, and agy,
respectively. Then, a, and a, are expressed in terms of a, and ay as

(g = Gy COS O — agsing, a, = a,sin ¢ + ay cos ¢. (2.52)

Hence, we have
ayr =7 — ré?, ap = 2% p + 1. (2.53)

2.7.2. Universal Gravitation Acting on Planets

The mass of the Sun, M, is much larger than those of the other
planets in the solar sytem, and so the Sun remains virtually at rest.
The universal gravitational force, F', exerted on a planet of mass m
by the Sun is

GmM r
rz r

F=-—

Y

where the vector r(|r| = r) is the position vector pointing from the
Sun to the planet. The negative sign above means that the force is

attractive. GG is the universal gravitational constant. The motion of
equation is

GmM r

mr = — 3

(2.54)

r r
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2.7.3. Moment of Central Forces

A central force acting on a particle, f, is a force parallel to the
position vector of the particle, r, namely, (f||7). The moment of a
central force, m, is

m=rxf=0.
Then, % = 0 from Eq. (2.48), and so
l = const.

Therefore, the angular momentum of a particle is con-
served during the motion of the particle on which only
central forces act.

Example 2.8. Suppose the position of a particle of mass m on the
x — y plane is

r = (z,y,2) = (rcos¢,rsing,0).

Here, r and ¢ are functions of time, ¢. Find [,, the z-component of
l, where I is the angular momentum of the particle.

Solution

The momentum of the particle, p = (ps, py,0), is represented as
Py = mi = m(r cos ¢ — résin¢), py = my = m(rsin ¢ + ré cos ?).

So, the z-component of the angular momentum is

l,=(rxp),
= TPy — YPx
=7TCcoso- m(fsinqﬁ—krg{ﬁcosgzﬁ) — rsin ¢ - m(r cos ¢ —'r’q'ﬁsinqﬁ)
= mrp. (2.55)
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Orbit

Fig. 2.31.

When a central force acts, we have
l, = const., i.e., r2gz§ = const.

Suppose a planet that experiences only the central forces moves on
a curved orbit (see Fig. 2.31) at a velocity, v(|v| = v). When the
planet is displaced Em point P to point Q' in a small interval, At,
the displacement PQ’ is nearly equal to vAt and the area of the
sector OPQ’, AS, is approximated by the area of the triangle OPQ.
Thus, the area AS is

1 1 1

Therefore, the areal velocity is

as 1 0

at  2m' "
That is, the areal velocity is equal to the angular momentum divided
by 2m. For the motion of a planet under the influence of only central
forces, we see that the areal velocity is constant, since [ is constant.

Example 2.9. As shown in Fig.i)32, the velocity of a particle

— —
changes from v = PQ to v/ = PQ’, as a central force F(||OP),
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0 «—p
Fig. 2.32.

instantaneously acts on the particle. Then, show that the areal
velocity about O is conserved.

Solution

— —
Since the cen‘@)l force F is parallel to OP, the velocity change QQ’
is parallel to OP:

—_—

QQ"| OP.

Therefore, we have
AOPQ = AOPQ'.

This shows that the areal velocity of the particle is conserved when
a central force acts on it. |

2.7.4. Motion of Planets

Since the universal gravitational force due to the Sun is a central
force, the angular momenta of the planets around the Sun are
conserved. Therefore,

L = mr?¢ = const.

From this result, we can derive the orbital equations of the
planets using the two-dimensional polar coordinates.

Equation (2.54) can be written in terms of the z- and y-
components of its terms as

GmM z . GmM y
— - my=-— <.

mx =
r2 r r2 r
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By using x = rcos¢ and y = rsin¢ in the right-hand sides of
the above equations, we obtain

. GM z GM
:1::_7-—2;:_7-—2008(;5’ (256)
GM y GM .

Substituting %2 = ™4 into Eqs. (2.56) and (2.57) and replacing —G?M
with p yields

i=—pdcos¢, ij=—pupsing.

Then, by using % sin ¢ = gz'Scos ¢ and % cos ¢ = —ésin ¢, we have

I = —,ui sing, 4= u% COS .

dt
After integrating the above equations over t, we get
T =—psing + Cq, (2.58)
Uy = pcos o+ Cs. (2.59)

Here, C7 and Cy are integral constants.
Example 2.10. Using Eq. (2.49), derive an equation in terms of r, ¢
and ¢ from Egs. (2.58) and (2.59).

Solution

After substituting Eq. (2.49) into Egs. (2.58) and (2.59), we have
Fcosg —rgsing = —psing + Cy,
Fsing + récos ¢ = pcos g+ Cy.

After summing the left-hand side of the first equation multiplied
by —sin ¢ and that of the second equation multiplied by cos ¢, and
equating it to the sum similarly obtained using the right-hand sides,
we obtain

r¢ = p — Cysin g + Cy cos ¢. (2.60)
|
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To determine the two integral constants in Eq. (2.60), we consider
the motion of a planet around the Sun. This motion is periodic. The
angle ¢ changes from 0 to 2m. We define ¢ = 0 (r = r1) at the
perihelion, the point at which the planet is the closest to the Sun,
and ¢ = 7 (r = r9) at the aphelion, the point at which the planet is
the farthest from the Sun.

The conditions for the perihelion are

d d?
¢ =0, —T:O and —2>O at r=ry.

dé dé

Example 2.11. Determine C; in Eq. (2.60) from the conditions for
the perihelion:

d
=0 and S at r =ry.

d¢
Solution
Substituting ¢ = mf;g and p = GTZM into Eq. (2.60), we have
L GmM
Lo _mma — Cysin ¢ 4+ Cy cos ¢
mr L
1 Gm*M C C
" o= 7722 — le sin ¢ + mL2 cos ¢.

We differentiate the both sides of the above equation with respect
to ¢:

1 dr mCy mCy

Y T A

sin ¢. (2.61)

Then, we use the condition for the perihelion. The condition
(g—;)d,:g = 0 gives

’ITLCl
=0 .. Ci=0.
7 . 1 ]
Example 2.12. Find a bound on the possible values of the integral
constant C5 using the following conditions: C7 = 0 and Lo 0

d¢?
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at r = r1. Further, derive the following equation with appropriate
positive constants D and e:

D

= 2.62
1+ecoso ( )
Solution

Since C7 = 0, Eq. (2.61) can be simplified to d¢ =72 mCQ sin ¢. After
differentiating this equation with respect to ¢, we have

d2r dr mCy . omCy
WZQT% 7 sing +r 7

COS .

Using the condition for the perihelion (%g)
r? mLQQ > 0. Since we can take L > 0 without loss of generality,
we conclude Cy > 0. Since C = 0, the equation that relates 7 and ¢

becomes

=0 > 0 yields

l_ Gm>*M n mCly b= Gm>*M . LC, é
ro I L T T Gm %)
Then, by defining D = m2 o7 and € = GLEJ@, we obtain
D
- - |
" 1+ecos¢’ e=>0.

Equation (2.62) is called equation of the conic section
in two-dimensional polar coordinates. The conic sections are
classified according to the value of ¢ (called eccentricity) as follows:

e=0 circle
O0<exl1 ellipse

e=1 parabola

e>1 hyperbola

2.8. Motion and Energy of Rigid Bodies

A rigid body is an ideal body that has a perfectly unchanging
shape and a definite size. The number of variables needed to specify
the motion of a rigid body is called its degrees of freedom.
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To specify the motion of a rigid body in space, we need the
following six variables: the z-, y- and z-coordinates of its center
of mass, the two angles # and ¢ to determine the direction of the
rotational axis that passes the center, and the rotational angle 1.
This means that the motion of a rigid body has six degrees of
freedom.

2.8.1. Motion of Rigid Bodies

To study the motion of a body with six variables, we need six
independent equations.

a. The equation of translational motion (contains three equa-
tions of components of vectors):

2
dd% = F, (F is the net external force). (2.63)

b. The equation of rotational motion (contains three equations
of components of vectors):

% = N, (N is the net moment of force). (2.64)

Let us consider a rotational motion about a fixed axis.

This motion has only one degree of freedom. We may model a
rigid body as a collection of a large number of particles of masses
m;(i =1,2,...). We express the angular velocity of a particle about
the rotational axis as w = 1,b and the distance from the axis to the
1th particle as ;. The angular momentum of the rigid body is, then,

L=> mirjw=Tw. (2.65)
A

Here, I = Y, m;r? is called the moment of inertia of the rigid
body about the rotational axis.

When we draw the z-axis along the fixed axis of the rotation and
express the z-component of the moment of force as N,, the equation
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of the rotational motion is

1=~ =N.. (2.66)

Example 2.13.

(1) Find I;, the moment of inertia of a solid, uniform cylinder of
mass M and radius a about its symmetry axis.

(2) Find I3, the moment of inertia of a solid, uniform sphere of mass
M and radius R about an axis through its center.

Solution

(1) We will, first, find the moment of inertia of a thin, uniform disk
of mass m and radius a (Fig. 2.33), about an axis perpendicular
to the disk and through its center. By using the mass per unit
area 0 = ", the mass of the ring (of radius r and width dr),
dm, is

dm = o - 2mwrdr.

The moment of inertia of the disk, I, can, then, be calculated as

a a 47¢@
1
I = / r2dm = 27ra/ r3dr = 2no [T—] = Ea4 = ~mad>.
0 0 41, 2

We will, next, find I, the moment of inertia of the solid
cylinder about its symmetry axis. As shown in Fig. 2.34, we
divide the cylinder into thin disks each of mass dM = m and

Fig. 2.33.
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- ~

[
\

Fig. 2.35.

moment of inertia I. We integrate I to get I;, the moment of
inertia of the cylinder:

Lo 1 N
Il—/2adM—2a/dM—2Ma.

We place the origin of the coordinate system at O, the center
of the sphere, and position the z-, y- and z-axes as shown in
Fig. 2.35. In terms of the density of mass (mass per unit volume)
of the sphere, p = %, and the volume element (minute

volume), dv, we can express the moments of inertia about the
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x-, y- and z-axes as
L= [ o + ),

I, = /p(z2+:c2)dv, I, = /p(w2+y2)dv-

Here, y? + 22, 2? + 22 and z? + 12 are the squares of the distances
from the position of a volume element, dv, to the z-, y- and z-axes,
respectively. By considering the symmetry of the system, we get I, =
I, = I, = I.. Hence, we have

1 2 2
L=+ 1,+1)= gp/(fv2+y2+22)dv= gp/Tde-

Finally, we substitute 47r-2dr, the volume of a thin spherical shell
of thickness dr, for dv to get I, the moment of inertial of the sphere:

571 R
2
[T—] = SR = MR

2 [# 8
I, = —p/ drrtdr = —7p =
0 5] 15 5

3 3

2.8.2. Rotational Kinetic Energy of Rigid Bodies

We express the speed of the ¢th volume element rotating at an
angular velocity, w, as r;w, where r; is the distance from the axis
to the element. Therefore, we can write the rotational kinetic energy
of the element (of mass m;) as %mi(riw)2.

The rotational kinetic energy of a rigid body, KR, is the
total sum of the kinetic energy of each of its element, and it is
represented as Kr = >_; 3m;(rw)?. It is expressed in terms of the
moment of inertia of the body, I, and its angular velocity, w, as

1
Kgr = 51& (2.67)

Example 2.14. As shown in Fig. 2.36, a solid, uniform cylinder of
mass M and radius R is initially (¢ = 0) at rest on a rough incline
with a slope angle of §. The central symmetry axis of the cylinder
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Fig. 2.36.

is horizontal. The coefficient of static friction, u, the coefficient of
kinetic (sliding) friction, p’, and the gravitational acceleration, g,
are known.

(1)

(2)

Find an inequality between p and 6 when the cylinder rolls
down without sliding on the incline. And moreover, find the
acceleration of the cylinder when it is rolling down on the incline.
Consider the case that the cylinder rolls down with sliding on
the incline. Find the velocity of the cylinder on the incline and
the sliding velocity of the point at which the cylinder comes in
contact with the incline as a function of time, ¢, while the cylinder
descends.

Solution

(1)

We choose the z-axis to point in the downward direction along
the incline and express the coordinate of the symmetry axis of the
cylinder as x. Since the cylinder rolls down without sliding, we
write the equations of the translational and rotational motions
in terms of F', the magnitude of the force of static friction on the
cylinder, and I, the moment of inertia of the cylinder about its
symmetry axis as

d
Mi = Mgsin0 — F, Id—:;’ ~ FR. (2.68)
The relation between the velocity of the center of mass, &, and the
angular velocity, w, is # = Rw. After substituting this equation

and [ = %M R? (see Example 2.12) into the second equation of
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Eq. (2.68), we have
Mz =2F.

Comparing the above with the first equation of Eq. (2.68) gives
Z, the acceleration of the descending cylinder, and F', the force
of the static friction, as

2 1
T = ggsin9, F= gMgsinﬁ.

The magnitude of the normal reaction force is N = Mg cos .
From F < uN, we obtain the condition that the cylinder rolls
down without sliding as

tan 6 < 3u.

(2) When the cylinder rolls down with sliding (i.e., tan6 > 3u), the
magnitude of the force of kinetic friction is

F' = /N =y Mgcos.
Hence, the acceleration is as follows:
Mi = Mgsing — y/Mgcos = i = g(sin@ — 1/ cos ) > 0.
We obtain the velocity of the center of mass at time t as

i = g(sin — p' cos ) t,

after using the initial condition that & = 0 when ¢ = 0.
On the other hand, the equation of rotational motion about
the center of mass is

d
Id—C: =F' R=p' Mgcosf-R.

After substituting I = %M R? into the above equation, we get

Ri) =2’ g cos 0.
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We, then, obtain the sliding velocity, u, as

u=2&— Rw=g(sinf — 3y cos ) t(> 0),

after using the initial condition that w = 0 when t = 0. [ |

Advanced Problems
Problem 2.9. The Atwood machine with friction

I Let us consider a model of the Atwood machine, which consists
of a square prism, ABCD, whose central axis is horizontal and
perpendicular to this sheet of paper and whose face AB makes an
angle of 7 with the vertical line. On the upper faces AB and BC
of the prism, there are massless bodies P and Q, respectively. As
shown in Fig. 2.37, the two bodies P and Q are connected by an
inextensible massless string, S1, and similar strings So and Sy are
hung down from P and Q, respectively. Note that the string S;
is horizontal and strings Sg and So are vertical. Here, we assume
there is static friction between body P and face AB as well as
between body Q and face BC; the frictional coefficients for both
cases are [ig. Suppose bodies P and Q are always in contact with
faces AB and BC, respectively.
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(1) Let the tension in string Sg be Ty. Find 77, the minimum
tension in string S; to keep body P at rest.

(2) We hang Wy, a weight of mass M), at the lower end of string
So, and Wy, another weight, at the lower end of string Ss.
Find mo, the minimum mass of Ws needed to keep bodies P
and Q at rest.

We replace the square prism of Section I with an equilateral
2n-sided prism (n = 2,3,...), and put n massless bodies on
the n upper faces of the 2n-sided prism. They are connected
by inextensible massless strings as in Section I. All the strings
are taut. The angle between each face of the 2n-sided prism and
its corresponding string is g5-. The coefficient of static friction
between each body and its corresponding face of the 2n-sided

prism is assumed to be equal to that in Section I, puy.

(3) We hang a weight of mass M from the leftmost body, and
another weight of mass m from the rightmost body. Find the
minimum value of mass m to keep all bodies at rest.

A massless string is wound on a fixed cylinder that is unable
to rotate. Its central axis is horizontal and perpendicular to this
sheet of paper. A small body of mass 10g is hung at the right
end of the string, while a man of mass 60 kg is hung at the left
end of the string (Fig. 2.38). Assume that the coefficient of static
friction between the string and the face of the cylinder is 1.0.

10g
60kg

Fig. 2.38.
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(4) How many times at least do we need to wind the string
around the cylinder to keep the man hanging at rest? Suppose
we define the number of turns as zero when the string is
just laid over the cylinder, and suppose friction acts only
between the string and the face of the cylinder but does not
act between two wound parts of the string that are in contact.
Here, one can use the following approximations in the case
where 2 is much smaller than unity (Jz| < 1),

cosr~1, sinz=uzx, ~ 1+,

1—=x

and in the case h — oo,

1\" def
(HE) —e=2718...

(e is the base of the natural logarithm.)

IV Suppose a massless string is just hung over a cylinder as in
Section III (the number of turns in this situation is zero). Weight
A, a weight of mass My, is connect to the left end of the string,
and weight B, a weight of mass Mp (<My), is connected to the
right end (Fig. 2.39). We pull B downward at an initial speed of
vg from point O. Then, B moves down to the lowest point where
it turns around, and starts moving upward. Then, it passes the
original point O. Assume the coefficient of static friction between
the string and the face of the cylinder is 1.0, and the coefficient
of kinetic friction between them is p(< 1.0).
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(5) Find the minimum value of the mass ratio %—g in order for
B to turn around at the lowest point. Express your result in
two significant figures.

(6) Derive the formula for v;, the speed of B at the instant
when B returns to point O, and calculate the ratio Z—‘l) to
two significant figures when Ma — 50 and u=0..8.

Mg
(the 1st Challenge)

Solution

(1) Let the normal force acting on body P be R, then the maximum
value of the static frictional force is pgR. When the tension in
string Sy is 71, the conditions for translational equilibrium are

To cos % = Tj cos % + uo R,

Tgsin%—l—Tlsin%:R,

in the directions parallel and normal to face AB, respectively.
After eliminating R from these equations, we obtain

™ 3 ™
cosy —posing . 1-—

D= MOTO
cos 7 + o sin 14 po

(2) When the mass of weight Wy is at its minimum value, mg, both
of the static frictional forces on bodies P and Q are at their
maximum values. Let the gravitational acceleration be g. Then,
in the same way as part (1), we obtain the tension mgg in string
So as

s : s
cos 7 — posin 7

mag = p= P
COS 7 + o sin 7

Since Ty = Myg, we have

s TN 2 2
COs 7 — fioSIn F 1-—
my = [k RO A (2 HOY g
COS 7 + fo sin 14 po
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(3) When mass m is at its minimum value, the static frictional force

acting on each body is at its a maximum value. Then, we have

i : s n
B <cos%—,ugsm%>
m = = —= M.
COS 5, + o SN 5~

In the limit of n — oo, we can regard an equilateral 2n-sided
prism as a cylinder. Using the result of part (3), we have in the
limit of 5~ — 0.

s 3 s n s n
[ cos g+ posin g . 1+ posg, -
~ \cos & — pgsin =~ T\ = g

2n Ho 2n Ho 2n

T\
~ (1 + ,LL(]—) m.
n

If we define i % M)Lﬂ? then we obtain in the limit of h — oo
1 po7h
(1 + Moz)n = <1 + —> — el
n h

When the number of turns is zero, the minimum value of mass
m needed to keep mass M at rest is given by

M = et™m. (2.69)

When the string is wound around the cylinder, we can treat
the string tension on both lower and upper parts of the cylinder
in the same way since the string is massless. Therefore, when the
number of turns is N, the minimum value of mass mg needed to
keep mass M at rest is given by

T Y S B |

where In is the natural logarithm whose base is e. After
substituting gy = 1.0, M = 60kg, and my = 10 x 1073 kg, we
obtain

N ~ 0.88.

Therefore, the minimum number of turns is 1
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In the same way as the derivation of Eq. (2.69), the condition
for the weight B to turn around at the lowest point is

M
Ma > e Mg . M—A>€“0ﬂ:eﬂ%£.
B

When the string slides on the cylinder with an acceleration,
the forces exerted on an infinitesimal part of the string on the
cylinder must always be kept in balance because the string is
massless. Therefore, the relation between Ty, the tension on
weight A, and Tg, the tension on weight B, can be derived in
the same way as the derivation of Eq. (2.69).

When B is falling, we have Ty = e #™1g, whereas when B is
rising, we have T = e 1g.

When B is falling (Fig. 2.40), the equations of motion of A
and B can be written as

Maag = Mag — e M T,
Mpag =T — Mgy,

where aq is the upward acceleration of B.

T, T,
v
T,
A ﬂad
u A
A9 T,
Myg
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After eliminating Ty from these equations, we have

My — Mge 7 "
g = ——————— g = const.
d My + My 6_/“79
Hence, by using the equation for a motion with a constant
acceleration, we find L, the distance between point O and the
lowest point of B, as follows:

0% —vg = 2(—aq)L,

L:i_1<MA+MBe—M>v§

Mp — Mge=+7 ) g

204d

When B is rising, its upward acceleration, «,,, is obtained by
replacing e " with e#™ in the expression for agq. That is,

My — Mpet™

= T M

Hence, v, the speed of weight B passing point O, is obtained
as follows:

v? — 02 = 2, L

My — Mger™)(My + Mge—m
B )

(MA + MBel“T)(MA — MBe—!”“)

Then, we have

U1 (MA — MBe“ﬂ')(MA + MBe_“ﬂ')

(MA + e,uﬂ' (%_g _ e—,uﬂ')
~1.3

( e,m (%_nge_m) 13.

% _ \/(MA + Mpet™) (M — Mpe +7)
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Problem 2.10. The rotation of rods

Consider a thin, uniform rod of length [ and mass M. The moment
of inertia of the rod about the transverse axis passing through its
center of mass is given by %M 2.

I There are two thin, uniform rods (A and B) of equal length, [,
and equal mass, M. Each rod is constrained at one of its end
along a horizontal rail and is free to rotate about its constrained
end in the vertical plane containing the horizontal rail. The
constrained end of rod A can move without friction along the
rail, whereas that of rod B is fixed to a point on the rail. Denote
the gravitational acceleration as g.

II

(1)

(2)
(3)

Each rod is initially kept in the horizontal position, as shown
in Fig. 2.41, and then quietly released. Find the ratio Z—’;
where wa and wp are the angular velocities of rods A and B,
respectively, as a function of 0, the rod inclines the angle to
the vertical line, as shown in Fig. 2.42.

Find the ratio z—g at the instance each rod is just vertical
(that is, 8 = 0).

Find the ratio % where Ty and Ty are the periods of the
sufficiently small oscillations of rods A and B about their
vertical positions (that is, 6§ = 0), respectively.

Two thin, uniform rods (A and B) of equal length [ and equal
mass M are connected to each other without friction and are

Fig. 2.42.
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[ [
P O
Y
Fig. 2.43.
o WQ/{,JQ wlfB
Y
Fig. 2.44.

placed in a straight line on a horizontal smooth plane as shown
in Fig. 2.43. The right end of rod A is constrained to a fixed point
O, about which the rod can freely rotate without friction. A blow
is struck at a point a distance h(h < [) from, P, the left end of
rod B. The direction of the blow is perpendicular to the line OP.
The impulse of the blow is denoted as Y.

(1) Just after the blow, find the angular velocity of rod A, wy,
that of rod B, ws, and the velocity of the center of mass of
rod B, vy (Fig. 2.44).

(2) Find the impulse delivered to the right end of rod A at the
instant the blow is struck.

(3) Suppose after the blow, the rods begin to rotate and remain
aligned in a straight line around the fixed point O. Find the
distance h (the point where the blow is struck), and wy, the
angular velocity of the rotation.

(the Final Challenge)

Solution

I (1) The case of rod A: Let the z-axis be the axis containing
the horizontal rail and the y-axis be the vertical line passing
through the center of the rod. Because there is no force acting
in the direction of the z-axis, the center of mass of the rod
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Fig. 2.45.

only moves along the y-axis. The y-coordinate of the center
of mass of the rod, y., is y. = %COSQ (Fig. 2.45). Let Iy
be the moment of inertia about the transverse axis passing
through the center of mass of the rod. Then, by the law of
conservation of mechanical energy, we have

1 1. l
§My2 + 51092 = Mgy. = Mg§ cos 0,

where the moment of inertia Iy is Iy = %Mlg. Using the

relation g, = —%(sin 0)0, we obtain

1 . 1
ﬂMZQ(l + 3sin? 0)6? = §Mgl cosf.

The angular velocity of the rod is, then,

. 3cos g
=0 =24/ —————=.
wa =01 =2\ 5 aTa

The case of rod B: Let I be the moment of inertia about
the transverse axis passing through the fixed end of the rod
(Fig. 2.46). Then, by the law of conservation of mechanical
energy, we have

1 . l

~16% = Mg- cos 0,

2 2
where the moment of inertia I is

1, AN
I=—-MP+M(=) =-MP2
12 2 3



(2) Substituting # = 0 into the above equation yields 2
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My

Fig. 2.46.

The angular velocity of the rod is, then,

3gcosd
T

Hence, the ratio of the angular velocities is

wp = [0] =

WA 2
WB /1 + 3sin24.

WA

(3) Let us find the period of sufficiently small oscillations of each

rod.

The case of rod A: Let F' be the normal reaction force
exerted upward on the upper end of the rod (Fig. 2.45). The
equation of the linear motion of the center of mass and the
equation of the rotational motion about the transverse axis
passing through the center of mass are, respectively,

Mgc = Mg - F7
.. 1 )
Iy = —§lF sin 6.

For sufficiently small oscillations about the equilibrium
position, the approximate relation sinf =~ 6 can be used.
Also, the variation in the y-coordinate of the center of mass
is negligible, and so F' ~ Mg. Then, the equation of the
rotational motion yields

- 1/2)IM
i 1/2Mg, Gy

(1/12) M2 Y
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The angular frequency and the period of the oscillation

are, respectively,
2 l
Ty = — =2m [ —.
w 6g

The case of rod B: The equation of the rotational motion
about the transverse axis passing through the fixed point is

l
10 = —Mg§ sin 6.

For sufficiently small oscillations,

0=——0.
21

The angular frequency and the period of the oscillation
are, respectively,
39
w=1/=

207

2 2
TB:—W:27T’/—Z.
w 39

Accordingly, the ratio of the periods is
Ty 1

g 2

IT (1) At the instant the blow is struck, impulsive forces are exerted
on the rods at the connection point as well as at the fixed
point O in the direction perpendicular to the rods (Fig. 2.47).
Let Y, be the magnitude of the impulse of the force exerted
on rod A at the fixed point O, and let Y, be the magnitude
of the impulse of the force exerted on rod A by rod B at
the connection point. Then, Y. is also the magnitude of the
impulse of the reaction force exerted on rod B by rod A at
the connection point.
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X
P 2} “Uiy,
Y C
Fig. 2.47.

The change in the angular momentum of rod A about the
fixed point O is equal to the moment of the impulse Y.:

1
Tw; =1Y,, I= §Ml2. (2.70)

The change in the momentum of rod B is equal to the
impulse Y — Y., and the change in the angular momentum of
rod B about the transverse axis passing through its center of
mass is equal to the sum of the moments of the impulses Y
and Y.. Thus we have

Mvy =Y — Y, (2.71)

l l 1
Iows==—h|Y +-Y., I,=—MI 2.72
ow2 <2 ) +2 D=5 (2.72)

Note that the velocity of the connection point of rod A is
equal to the velocity of the connection point of rod B:
l

lwy = v9 — w2 (2.73)

Substituting the expressions for wy,vo and wsy obtained in
Egs. (2.70) through (2.72) into Eq. (2.73) yields

e Y -Ye L(/2-WY +(/2)Y,
(1/3)MI2 ~ M 2 (1/12) M2

By solving this equation for Y., we obtain

_2(3h-1)

Y.
7l

Y.
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By substituting this relation into Egs. (2.70) through
(2.72), we obtain the following relations:

6B Y

R P
L _6BL-8nY 3312 Y
T e P M

The motion of rod A immediately after the blow is given by
the combination of the translation of and the rotation about
its center of mass. Let v1 be the velocity of the center of mass
of rod A just after the blow. Then, the change in the linear
momentum of rod A is

MUI :Yo—i_l/(la

and the change in its angular momentum is
l
B (Yo —Y,).

Either equation gives the same result. Here, by using the
former, we have

Iow1 =

l
}/;):MUI_}/C:Mﬁwl_}/C

_16(Bh 1), 2Bh—1), 3h—I
S TR TR

If the two angular velocities w; and wo are the same, the
two rods will rotate at the same angular velocity and remain
aligned in a straight line. The relation wi = wy gives h = %l,
and substituting this expression for h into the equations for
w1 or wy yields
= T~
Suppose the fixed point O is able to support the centrifugal
force due to the circular motion of the rods, they will rotate

W1 = W2 wo-

about O without translation at a constant angular velocity
of wo- [ |
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Problem 2.11. The expanding Universe

Using Newton’s law of universal gravitation, we’ll study the develop-
ment of the Universe without taking into account the general theory
of relativity.

When we observe lights coming from distant galaxies, the
wavelength of the observed lights are shifted longer. The wavelength
of the light emitted from a receding source is longer than that from a
stationary source (or that observed in the rest frame of the source).
This shift of the wavelength is called the red shift. The speed of
light in vacuum is denoted as c.

(1) An atom receding at a speed, v, from an observer, O, emits light
of a wavelength that has a value of A9 when observed in the
rest frame of the atom. Express A, the wavelength of the light
observed by O, in terms of Ay, ¢ and v. Suppose v is much smaller
than ¢ (v < ¢). Therefore, it is not necessary to take account of
the special relativity.

In 1929, Edwin Hubble, an American astronomer, found by
observing the wavelengths of the lights coming from distant galaxies
that most galaxies are receding from the Earth at speeds nearly
proportional to their distances from the Earth. The relation between
v, the receding speed of a galaxy, and r, its distance from the Earth, is

v = HQT’.

Here, Hj is called the Hubble constant. If this equation is valid
for an arbitrary duration of ¢, the above relation can be written in
terms of the receding speed v(t), the distance r(t) and a parameter
H(t) as

o(t) = H(t)r(t), (2.74)

where v(t) = d’;l(tt) is the receding speed and H(t) is called the

Hubble parameter, which is a function of time.

The Universe has neither special places nor special directions.
This is called the cosmological principle. With this principle, we
consider the expansion of a uniform and isotropic universe. Imagine
its expansion as an inflation of a balloon. The distance between two
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arbitrary points on the surface of the balloon increases uniformly
with the inflation. We can liken this increase of the distance on the
surface (which is a two-dimensional space) to the increase of the
distance between two galaxies in the Universe (which is a three-
dimensional space).

We introduce, in terms of ry, the present (t = tp) distance
between an observer, O, and a particle, P, and r(t), the distance
at time ¢, a quantity called the scale factor, a(t), which represents
the scale of the expansion of the Universe:

a(t) = @ (2.75)

When an immense explosion called the Big Bang happened
(t =0), we consider observer O and particle P to be at the same
point. That is, we suppose r(0) = 0 and a(0) = 0. In the following,
we simply write r(¢) as r and a(t) as a.

(2) Represent the Hubble parameter, H(t), in terms of the scale

factor a and its derivative %.

We denote the density of mass of a sphere (whose center is at a
point O) with a radius of rg at time ¢y as pg and that of a sphere
with a radius of r at time ¢ as p. Suppose the total mass of a sphere
is conserved as it expands.

When the mass is uniformly distributed, it seems to an observer
at point O that the mass distribution is spherically symmetric around
him. We denote the distance from a particle, P, to point O as r. Then,
the net gravitational force on particle P due to the mass outside the
sphere with a radius of » and centered at point O is zero. Hence, the
net gravitational force on P is the same as that when the mass inside
the sphere were all concentrated at O (Fig. 2.48). In the following,
we denote the gravitational constant as G.

(3) When we write the acceleration of a particle P at a point of a

. . 2
distance r from point O as ‘;T;", we have

d?a 1 d?r

datr v dt?’

1d%

4 in terms of p and G.

Express
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Fig. 2.48.

At present, the Universe is expanding. So, the possible future of
the Universe is as follows:

(i) The Universe keeps expanding forever.
(ii) The Universe shrinks eventually.

Recent observations show that the fate of the Universe lies on a
border between (i) and (ii). This means that the total mechanical
energy of the Universe is nearly zero. In the following calculations,
assume that the mechanical energy is zero.

(4) Suppose particle P recedes from point O. Express (% i—’;)z in terms

of p and G by using the law of conservation of mechanical energy

of P.
(5) Suppose the total mass of a sphere is conserved as it expands.

Express p in terms of pg and a.

From parts (4) and (5), we can see that the scale factor a(t) at

time t can be expressed as

a(t) = <%>n (2.76)

Here, tg is the present time and we have a(tp) = 1.
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(6) Find n, the exponent in Eq. (2.76). Furthermore, express the
time tg in terms of the present mass density of the Universe, py,
and the gravitational constant, G.

(7) Express the present age of the Universe, tp, in terms of
the present Hubble constant, Ho(= H(tp)). By using Hy =
72km/(s-Mpc), find the value of ¢y to two significant fig-
ures in the unit of year. Furthermore, by using G = 6.67x
107N - m? /ng, find the value of py to two significant figures.
Here, 1Mpc = 10°pc and 1pc = 3.09 x 10m (Mpc and
pc are abbreviations of mega parsec and parsec, respectively),
and one parsec is defined as the distance at which there is
an angular separation of one arc-second (:ﬁo) between two
objects 1.50 x 10" m apart. The distance 1.50 x 10" m is the
average distance between the Earth and the Sun.

(the 2nd Challenge)

Solution

(1) When the atom (the source of light) recedes from the observer,
the wavelength of the observed light, A, becomes longer:

c+v

A= Ao-
c
(2) We divide both sides of Eq. (2.74) by rg and use %v(t) = %% =
‘é—‘; and - = a to obtain
1da
H(t)=——. 2.
t)=—— (2.77)

(3) The mass within the radius r is ,0%71‘1"3. It exerts a gravitational
force on particle P. In terms of m, the mass of P, the equation
of motion of P is

mﬂ _ _Gpgm'?’m _ _4nGm

dt? r2 3
We divide both sides of the above by m and r and use
Eq. (2.75) to obtain

pr.

1 d2a ArG

caz - 3"
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(4) Particle P has a kinetic energy of imuv? Im(2)? and
: = 47§G,07“ m.

4r 3
a gravitational potential energy of _Gemrm
Then, by the law of conservation of mechanical energy, we have,

Next, we divide both sides of the preceding equation by 2 and
use Eq. (2.75) to obtain

1da 8rG
= — 0. 2.78
<adt> 3 " (2.78)

(5) Since the total mass is conserved we have

4
P 37'('7’3 = p0 gﬂ'T’S’
7"8 Po
o= =20 (2.79)

(6) From Egs. (2.78) and (2.79), we have

da\®  87G py
) 3 a’

By using a = (%)", we get

da k t\ "2
T k2 ) 2.

Where k = STFG % po. Differentiating both sides of Eq. (2.76)
with respect to ¢ ylelds

da _2 n—1

== : 2.81
at i (2:81)



90 Physics Olympiad: Basic to Advanced Ezercises

By comparing the exponent of ¢ in the right hand side of
Eq. (2.80) with that of Eq. (2.81), we obtain

2
n=-—.
3
_1
Then, Eq. (2.81) becomes % = %(%) 3 = %ﬁ So, we
have
2 G
i MY il
31, 3 "
oty = (2.82)
0T Vor Gpo '

1
(7) From % = %(%)_5, we have (‘é—‘;)t:to =

Eq. (2.77) and a(tg) = 1, we have

1 da 2
Ho=H(ty) = | —— =
0= H(to) <adt>t:t0 3t
2
~ 3Hp'

2 .
370 Hence, by using

1o

From Hy = % ~ 2.33x107 18 s~ and 1 year = 365 x

24 x 60 x 60s ~ 3.15 x 10" s, we get

9 9 .
SHy, ~ 3x 233 x 10185 280x107s

= 9.1 x 10? year.

to =

Finally, from Eq. (2.82), we obtain

1
po = 67 Gt%

L 3
= k
67 % 6.67 x 1011 x (2.86 x 1077)2 "&/™

=9.7x 107% kg/m?.




Chapter 3

Oscillations and Waves

Elementary Course
3.1. Simple Harmonic Oscillation

When a particle of mass m at a displacement x from the origin, O,
moves along the x-axis under the influence of a restoring force
given by —kz (k > 0), the equation of motion of the particle is
2

m% = —kux. (3.1)
By introducing arbitrary constants A and «, which are to be
determined using initial conditions, we can write the solution of
Eq. (3.1) as

x(t) = Acos(wot + ), (3.2)

where wg = \/k/m.

Equation (3.2) indicates that the particle oscillates within a
region —A < z < A. This motion is called a simple harmonic
oscillation. Here, the constant A is called the amplitude, wgt + «
is called the phase, the constant « is called the initial phase,
wo is called the angular frequency, T' = (27/wg) is called the
period (the time required for one complete oscillation) and (the
number of oscillations in one second) f(= 1/T = wp/27) is called
the frequency or the eigenfrequency.

When a weight of mass m suspended by a spring with a spring
constant of k is set to oscillate, the angular frequency of the
oscillation is given by wy = y/k/m. A simple pendulum of length

91
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Pivot

Fig. 3.1.

L exhibits a simple harmonic oscillation with an angular frequency
of wp = +/g/L, where g is the gravitational acceleration.

Example 3.1. Consider a simple pendulum of length L with a weight
of mass m and let it swing with a small amplitude. Formulate the
equation of motion for the oscillation of this system and derive its
angular frequency.

Solution

As described in Fig. 3.1, we denote the displacement of the weight
in the x-direction as x and the angle between the string and the
vertical line as 0. The weight is under the action of a downward
gravitatitional force of mg and the tension of the string toward the
pivot. When 0 is small, the weight moves very little vertically, so we
can assume a static balance of force in the vertical direction:

S cosh = myg. (3.3)
The equation for the horizontal motion is

d2
mﬁf = —Ssiné. (3.4)
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When || < 1, we may apply the approximation cosf =~ 1 to
Eq. (3.3) to yield S ~mg. From Fig. 3.1, we have = Lsinf. Then,
by substituting these relations into Eq. (3.4), we get

d’x mg
— = ——2z. 3.5
e L (3:5)

This equation represents a simple harmonic oscillation so does
Eq. (3.1), so by comparing Eq. (3.5) and Eq. (3.1), we get the angular
frequency as

woy =

(3.6)

&=

This indicates that the angular frequency or the period of a
simple pendulum is independent of the mass of the weight and the
amplitude of oscillation. This is called Galileo’s isochronism of
pendulum. [ |

3.2. Waves

Wave is a phenomenon in which particles of a medium each oscillates
about a point and the oscillation propagates to its neighboring
particles of the medium in succession. When the oscillation can
be represented by a sine function, the wave is specifically called a
sinusoidal wave. When a particle simply oscillates about the origin,
O, (defined as =0) with a period of T, then the displacement of
the particle from O at time ¢, y(0,¢), can be written in the form of
Eq. (3.2) as

y(0,1) = Acos <2ﬂ%>, (3.7)

where, for simplicity, the initial phase is set to zero. Suppose this wave
travels at a speed of V. Then, at a point P away from the origin by
a distance x in the direction of the wave propagation, the medium is
displaced by the same amount as that at the origin with a time delay
of #/V. This means that the displacement at P at time ¢ is equal to
that at the origin at time ¢t — 2:/V". Therefore the displacement of the
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medium at P can be expressed as

y(z,t) = Acos {2%% (t - %)} . (3.8)

The wavelength, )\, is the distance that the wave travels during
a period, T', so we get the relation:

A=VT &V =/f\ (where f =1/T is the frequency).  (3.9)

Equation (3.8) can then be rewritten as

y(z,t) = Acos {27r <% - §> } (3.10)

We define the wave number k by the relation £ = 27/A. Then,
by using the relation w = 27 /T, we get

y(z,t) = Acos(wt — kx). (3.11)
Example 3.2.

(1) Find the amplitude, frequency, wavelength, and speed of propa-
gation of the wave described by the equation

y = 0.2 cos [7(5t — 2z)].

Here, the units of length and time are taken to be meter and
second, respectively.

(2) When a sinusoidal wave of amplitude 0.1 m and frequency 2 Hz
travels at a speed of 2 m/s in the —z direction, derive the
expression for the displacement y at position x at time ¢ by
using an integer, n. Here, we assume that the displacement at
the origin (z = 0) at time ¢ = 0 is zero, i.e., y = 0.

Solution

(1) From Eq. (3.10), the amplitude is A = 0.2m, the period is T" =
0.4 s, and the wavelength is A = 1.0m. From these values, the
frequency, f = 1/T = 2.5 Hz, and the propagation speed of the
wave, V = fA=25m/s.
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(2) Using A =0.1m, 7" = 0.5s and A = VT = 1m (because V =
2m/s), we have

y(z, 1) = 0.1 cos {47r (t v g) + (n n %) w}

T nrT
— _01si {4 (t i —)}
0.1sin 4w +2+4 ]

Example 3.3. We observed a sinusoidal wave travelling along
the z-axis at two positions (x=0 and x=1m), and found the
displacements of the wave at these two positions as follows:

y(0,t) = 0.2cos(3wt), y(l,t)=0.2cos(3mt+ 7/8).

Find the frequency, wavelength and speed of propagation of
this wave in both cases in which the wave travels in the +x and
—x directions, using the appropriate integer, n. Enumerate all the
possible values of the wavelength longer than 0.7 m.

Solution

A comparison of the observed data with Eq. (3.7) gives us the
frequency, f = 1.5 Hz.

At the position 1 m away from the origin, the phase of the wave
is shifted by § & 2n7 (n = 0,1,2,...) from that at the origin (we
can add an arbitrary integer multiple of 27). If this phase difference
is negative, its wave equation corresponds to Eq. (3.10) and can be
regarded as a wave travelling in the +z direction. In comparsion,
if this phase difference is positive, it is a wave travelling in the
—x direction.

Therefore, in the case of the wave travelling in the +x direction,
we have from Eq. (3.10)

2
_Tﬂ-_g_2nﬂ-> (n:172a )a
from which we get
16 24
= =1.1 V=7Ff= =1.6
6n—1" o A= 1o /s = Lom/s,

where we substituted n = 1 from the condition that A > 0.7 m.
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In the case of the wave travelling in the —z direction, we have
from Eq. (3.10)

2
%:%Jrzm, (n=0,1,2,...),
from which we get
16
on4 1 =
Ve fam —2 s = 24m/s, 1.4m)
e e m/s = m/s 41m/S
16n +1 —_—
where we substituted n = 0 and n = 1 from the condition that
A > 0.7m. [

Elementary Problems

Problem 3.1. A graph of a sinusoidal wave

Suppose we observe the wave propagation on a water surface. The
displacement of the water surface at ¢t = 0 is shown by the solid line
in Fig. 3.2. After 0.2s (i.e., at t = 0.28), a wave as shown by the
dashed line in Fig. 3.2 is observed for the first time.

(1) What is the frequency of this wave? Choose one from the
following. (a) 0.8 Hz (b) 1Hz (c¢) 1.25Hz (d) 1.5Hz (e) 2.5 Hz

Displacement
A

» Position x [m]

Fig. 3.2.
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(2) Which of the following is the correct graph describing the change
of the displacement at x = 0 with respect to time?

Displacement Displacement
A A
0 >t 0 >t
(@) (b)
Displacement Displacement
A A
0 >t 0 r
(© (d)
Fig. 3.3.

(the 1st Challenge)
Answer (1) (¢), (2) (b)

Solution

(1) This wave travels a distance of a quarter of its wavelength in
0.2 s. Therefore, we find that the period, T, and the frequency,
f, of this wave are

T=02sx4=08s,f=1/T=1/0.8=1.25Hz.

(2) In Fig. 3.2, we see that the displacement at z = 0 is zero at t = 0,
and it becomes negative just after that. Only (b) satisfies these
conditions. [ |
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Problem 3.2. An observation of sound using microphones

A speaker and a microphone are placed as shown in Fig. 3.4. The
speaker emits a sound of wavelength A. The microphone detects the
sound and converts it into an electric signal. In this way, we can
obtain the waveform of the sound. We assume that the attenuation
of the sound is negligible and that the microphone does not disturb
the sound.

Curve (i) in Fig. 3.5 shows the waveform of the sound as measured
by the microphone, which is set just in front of the speaker. We put
another microphone at a distance L = A\/4 from the speaker and
simultaneously measure the sound using the two microphones. Then,
we observe both of the curves, (i) and (ii), shown in Fig. 3.5.

Speaker Microphone
Fig. 3.4.

Output voltage (V)
1.0

0.5

0.0

-1.0 L L I l
00 05 1.0 15 20 25 30 35 40

Time (msec)

Fig. 3.5.
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We put six microphones in series such that the distance between
two neighboring microphones is L, as shown in Fig. 3.6. When
L =), find the amplitude of the total combined output voltage
from these six microphones.

When L= %)\, find the combined output amplitude from micro-
phones 1 and 4.

When L = %/\, find the total combined output amplitude from all
six microphones.

Speaker Microphone 1 Microphone 2 Microphone 6
ﬂ’\/\/\/\/v\/v ’\/\/\/\/\/\/v’\/\/\/\/ """" ’\/\/\/\/W
Fig. 3.6.

Now, we array a large number of microphones in series in the
same way as in part (1) such that the distance between two
neighboring microphones is L. How does the total combined
output amplitude change with the length L? From the graphs
in Fig. 3.7, choose the best relation between the total combined
output amplitude and the length L.

(the 1st Challenge)

I I T T
1 L
0 A 22 0 A 22 0 22
(a) (b) ©
T T T
| 1 | | ﬂ I
0 A 2 0 A 22 0 A 22
G)) () )
Fig. 3.7.

Answer (1) 6.0V, (2) 0V, (3) 0V, (4) (c)
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Solution

(1)
(2)

From Eq. (3.10), we can see that these six outputs have the same
phase. Thus, the total combined output amplitude is 6.0 V.
The distance between microphones 1 and 4 is 3L = 3 X %)\ = %)\.
Using Eq. (3.10), we obtain that the phase difference is 5.
Therefore, their outputs cancel out each other, and the net
output is 0 V.

In the same way as part (2), it turns out that the combined
output amplitude of microphones 2 and 5 is 0V, and that of the
microphones 3 and 6 is 0 V. Therefore, the total combined output
amplitudes from all six microphones is 0'V.

Unless L = integer X\, the total output is zero, because for each
microphone there exists another microphone whose output has
the opposite phase. Only when L = integer x A\, all of the outputs
have the same phase, and the combined output amplitude has a
large non-zero value. The answer is (c). [ |

Advanced Course

3.3. Superposition of Waves

3.3.1. The Young’s Double-Slit Experiment

Imagine a Young’s double-slit experiment in vacuum, as shown in
Fig. 3.8. The two light waves from slits S; and So are superposed on
the screen, and is observed at a point, P, on the screen. Let us discuss

e——%
Light

source

Double slit Screen

Fig. 3.8.
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the intensity of the observed light. If we denote the oscillation of the
light wave from slit S; at point P as

Y1 = Al sinw t,
then that from slit So at point P can be written as
Yo = A2 sin(wt — (5),

because the phase of yo is shifted by § = 2xL/)\, (where X is the
wavelength) due to the path difference L = [SoP — S;P|. Therefore,
we obtain the expression for the resultant oscillation at P as

y=y1+y2 = Arsinwt+ Assin(wt — 9)

= \/A% + A2 +2A, A5 cos b - sin(wt + ), (3.12)

where we have used trigonometric identities, and [ is a constant
dependent on .

The intensity of light is proportional to the square of its
amplitude. Then, from Eq. (3.12), the intensity, I, of the observed
light at P is

A2+ A2+ 241 A5cos8 < I =11 + I + 2y/I1 I - cosd,  (3.13)

where I; and I» denote the intensities of the light waves y; and yso,
respectively. Let n be an integer, then from Eq. (3.13), we can see
the following:

When 0 = 2nm,
the intensity I takes the maximum value of
I = (/I 4+ +/I15)* (bright fringes) (3.14)

When 6 = (2n + 1),
the intensity I takes the minimum value of

I = (/I —\/I)? (dark fringes). (3.15)

This is the effect of the interference of the light waves. The situation
(3.14) is called constructive interference, and (3.15) is called
destructive interference. These interference conditions can be
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rewritten in terms of the path difference L as L = nX and L =
(n+1/2), respectively.

Next, we consider the case where d, the phase difference between
y1 and y9, changes randomly with time. The average value of cosd
over the observation time is zero, that is, cosd = 0 in Eq. (3.13).
Then, we obtain

I =1+ 1.

In this case, the two waves do not interfere with each other, and
the total intensitly is a simple sum of the intensities of the individual
light waves. In order to interfere, the phase difference must be kept
at a certain constant value. Therefore, two light waves from two
independent sources, which imply their phase difference is randomly
changing, do not cause any interference effect.

Example 3.4. In Fig. 3.8, let d be the interval between the two
slits S; and S, and let D be the distance between the slits and
the screen. Find the interval between two neighboring bright fringes
observed on the screen, assuming D > d. You may use the following
approximation formula:

14+ 2)*~1+azxif |z| < 1.

Solution

Let O be the point of intersection between the central axis and the
screen and x be the length of OP. Then, the path difference, L, at P is

L:\/D2+<x+§>2—\/D2+<x—g>2

2y 172 2y 172
:D{1+<x+Dd/2> } —D{1+<x_Dd/2> }
Q:D{l—ké<x+Dd/2>2}—D{1+%<x_Dd/2>2}:%:c.

(3.16)
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The constructive interference occurs at x where the path differ-
ence, L, satisfies the condition L = nA, ie., z = "ATD. Therefore,
we obtain the interval between two neighboring bright fringes as

D

3.3.2. Standing Waves

Let us consider the situation in which two waves are travelling in
opposite directions with the same period, T, the same amplitude, A,
and the same wavelength, A, i.e., their velocities are also the same.
We can write the oscillations of these waves as

the wave travelling in 4+ = direction :

yi(x,t) = Asin{%r (t— %)}

the wave travelling in — x direction :

vl 1) :Asm{%r (t+ %)}

These waves are superposed and interfere with each other. We
can calculate the resultant wave y(x, t) as

2 2
y(x,t) = yi(x,t) + ya(z,t) = 2Acos <77r:c> - sin <%t> ,

the amplitude term the oscillating term

(3.18)

where we have used trigonometric identities as well as the relation
vT" = A. When we observe the resultant wave at a point x, it oscillates
according to sin(g%t), while its amplitude depends on x. Since this
wave is oscillating in time and in space independently (the oscillation
in time and that in space are independent of each other), it is not a
traveling wave. Such a wave is called a standing wave, which, at
every point, oscillates with time in phase. The locations

1\ A )
T = n—|—§ 5 for integers n,
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where the amplitude term that is equal to zero, are called nodes,
and the locations

A :
T = n§ for integersn,

where the amplitude term that is at its maximium, are called
antinodes. At an antinode, the amplitude is 24, which is the double
of that of the original sinusoidal wave. We can also see that the
A

distance between two adjacent nodes or antinodes is 5.

Example 3.5. Let us discuss a sinusoidal wave moving in the +x
direction.

yi(z,t) = Asin%r (t — %) .

A wall located at x =L reflects this wave. Answer the following
questions for each of the following two cases: (a) The wall is a fixed
end. (b) The wall is a free end.

(1) Find the expression for the reflected wave.
(2) Find the expression for the resultant wave produced by the
incident wave and the reflected wave.

Note that a fixed end is an end where the amplitude of the
resultant wave of the incident and reflected waves vanishes at all
times, whereas a free end is an end where the displacement of the
reflected wave is equal to that of the incident wave.

Solution

(1) The reflected wave moves in the —z direction, and has the same
amplitude, period, and velocity as the incident wave. Therefore,
the reflected wave can be written as

ya(z,t) :Asin{%r (t—l—%+ﬁ)},

where 3 is a constant that is to be determined by the condition
that the wave should satisfy at the end x=L (a boundary
condition).
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(a) In the case where x = L is a fixed end, the displacement
y must always satisfy the condition y(L,t) = yi(L,t) +
y2(L,t) = 0. Therefore,

i 2 (- D) s d 2 (e L) L =0
SIHT 0 S T U = U.

From this equation, § is determined to be g =
we obtain

. 2 x — 2L
yg(:c,t):A&n{?(t—i— ” >+7r}
2 x— 2L
= —Asin< — .
sm{T <t—|— " )}

(b) On the other hand, in the case where z = L is a free end,
the displacement y must satisfy the condition. y1(L,t) =
y2(L,t). Therefore,

. 27 ; L\ . (2« : L
sm?(—z>—sm{T<+;+ﬁ>}.

_2L

v !

From this equation, (3 is determined to be G = and we

obtain
2 xr — 2L
t) = Asi — |t .

(2) The resultant wave is y(x,t) = y1(z,t) + y2(z,t). Then, we have

(a) y(z,t) = 2Asin <27” : L;””) ~Cos{2% <t— %)}
(b) y(z,t) = 24 cos <2? - Lf) -sin{Q% <t— %)}

We can see that these resultant waves are standing waves,
oscillating independently in time and in space. u

3
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3.3.3. Beats

We now consider the superposition of two waves with slightly
different frequencies. Suppose that the frequencies of these two waves
are fi and fo, respectively, and that the waves are expressed as
y1(t) = Asin(2rf1t) and yo(t) = Asin(2rfot + «) at a point.
Then, using the trigonometric identities, the superposed wave can
be written as

y(t) = y1(t) + ya(t) = 2A cos <2ﬂ (f1 —2f2) t— a>

the slowly varying amplitude term

n<27r(f1+f2)t—|—a).

5 (3.19)

the oscillating term

While the sine function in Eq. (3.19) oscillates at a high frequency,
the cosine function varies slowly with time since |f; — fa| is small.
This phenomenon, illustrated in Fig. 3.9, is called beats. We do not
hear two sounds at two different frequencies f; and fo separately,
but hear the superposed wave whose frequency is the average of
the original frequencies and whose amplitude is periodically and
slowly varying. The period of the variation in amplitudes, T', which
is the period of the beats, is the interval of time satisfying the

A A
1y NH'I \"HW\H

(a)

Y (t)- »(t)

——— e E——
—

Il
A

|
!

(b)

»()
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cosine function equal to zero. Therefore, the expressions for the beat
period, T, and the beat frequency, f, are

1 1
T_M7 f_T_|f1_f2|a (3.20)

respectively.

3.4. The Doppler Effect

When a source of sound is in motion relative to an observer, the
observer hears the sound at a frequency different from the original
one. This effect is called the Doppler effect. It occurs not only with
sound but also with light.

Let us consider a source emitting a sound of frequency f, as
shown in Fig. 3.10(a). Let V' be the velocity of the sound, vg be
the velocity of the source, and suppose that vg < V. Note that V'
is a constant regardless of the velocity of the source because the
emitted sound propagates in an air that is at rest. In Fig. 3.10(a),
wave crests are shown. We can see that the wavelength in front of a
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moving source, X, is shorter and the wavelength behind the source,
N, is longer (A < A < X’). As shown in Fig. 3.10 (b), the wave
crests travel a distance, V', per unit time, whereas the source travels
vs. Since f wave crests are produced per unit time, there are in a unit
time f wave crests in the interval V' — vg in front of the source and
in the interval V 4 vg behind the source. Therefore, the wavelengths
N and \" are

X:V}US :( —%S)A, X’:V;”S :(1+1"/—S)A, (3.21)

respectively. Here A = V/f is the wavelength of the sound emitted
from the source when it is at rest. Therefore, a stationary observer
hears the sound wave with the following frequencies:

f = % =7 sz f (in front of the moving source),  (3.22)
"= v = v f  (behind the moving source). (3.23)
NV 4 vg

Next, let us discuss the case where both the source and the
observer move. Suppose that the source moves to the right at a
velocity, vg, and that the observer also moves to the right at a
velocity, vy, in front of the moving source. The wavelength of the
sound as heard by this observer is unchanged by his motion. It is the
X\ given by the first equation of Eq. (3.21). However, the velocity of
the sound will be replaced by the relative velocity V' —vg, due to the
motion of the observer. Thus, in this case, we obtain the following
expression for the frequency f’ rather than Eq. (3.22):

V—vy V—1g

== et (3.24)

In the case of vg<V and vy V, Eq. (3.24) is approximately
written as
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This result shows that the change in the observed frequency due to
the motion of the observer is determined by his velocity relative to
the source, vy — vg.

3.4.1. The Doppler Effect of Light

In the case of light, the velocity of light relative to an observer must
always be kept constant due to the principle of constancy of light
velocity in the theory of special relativity. Thus, the wave velocity
relative to the observer, V — vy, in Eq. (3.24) should now be replaced
by the constant light velocity, ¢. When the source of light is moving
away from the observer at a velocity of vg, we obtain

fr=—c7 (3.26)

c+ vg

Note that this result depends on the velocity of the source relative
to the observer, but is independent of the velocity of the observer.
In fact, Eq. (3.26) is an approximate expression (that is valid only
in the case when vg < ¢) for the general expression for f/, which can
be derived from the theory of special relativity as

=5y (3.27)

C+ vg

We can see that in the case of vg < ¢, Egs. (3.26) and (3.27) are
equal up to the first order with respect to vg/c.

3.4.2. Shock Waves

If a source of wave moves faster than the wave velocity (vg > V), the
situation changes dramatically. As shown in Fig. 3.11, as the source
moves, it generates spherical waves at each point. These spherical
waves form a cone-shaped wave crest, where the spherical waves
constructively interfere with one another, and the amplitude of the
cone-shaped wave becomes extremely large. This pulse-like wave,
advancing in the direction of the arrows in Fig. 3.11, is called a
shock wave. While the source moves a distance vgt from Sy to S
during time ¢, the wave travels V't from Sy to A. Therefore, the half
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The wave front of
a shock wave

Fig. 3.11.

apex angle of the cone, «, is given by

sina = —.
vs
In particular, when vg = V', we have a =90°, which means that
in this case, the wave crest becomes perpendicular to the direction
of the source movement. As illustrated in Fig. 3.11, the propagating
direction of the shock wave makes an angle of 6 to the direction of
the velocity of the source, where 6 is given by

cosf = —.
vUs

Advanced Problems

Problem 3.3. The propagation velocity of a water wave

Wave motion is one of the broadest scientific subjects. The behavior
of water waves and the propagation characteristics of various kinds
of waves, such as light and sound, are fascinating, yet familiar in
everyday experiences. Here, we take up a few attractive problems
specific to water waves, which are, in general, associated with water
motions in a gravitational field.

The dynamics of water waves is relatively complicated, com-
pared to other waves. This complication results from the fact that
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the periodic motion of water is essentially two-dimensional. For
comparison, let us look at a couple of typical examples of waves.
Waves propagating on strings are transverse waves, in which the
media of strings oscillate perpendicularly to the direction of wave
propagation. On the other hand, sound waves propagating in the air
are longitudinal waves, in which the medium of air oscillates parallel
to the direction of wave propagation. However, it should be noted
that motions in water waves are neither only perpendicular nor only
parallel to the direction of wave propagation, but are perpendicular
and parallel simultaneously.

Since the surface of water goes up and down, the motion of water
undoubtedly has a component perpendicular to the direction of wave
propagation. Next, consider a person floating with a swimming ring
in the sea. When he is floating at a crest of the wave, he moves toward
the seashore; in contrast when he is floating at a trough of the wave,
he moves away from the seashore. So, we can see from this example
that wave motion in the direction parallel to the wave propagation
surely exists in water waves.

Although the water motion mentioned above is, in general,
described by a motion along an elliptical orbit in a vertical plane.
For simplicity, we may consider this motion a circular motion at a
constant speed as shown in Fig. 3.12. Here, waves move to the right
at a constant speed, V.

In Figs. 3.12(a)—(c), the center lines of the circles, which
are denoted by broken horizontal lines, are fixed in space.
Figure 3.12(a) shows the situation in which the trough of the wave
goes into the position just under the center, O. Then, a cluster of
water (denoted as a black dot on the water surface) located at the
bottom of the circle rotates clockwise with time along a circular path,
and then arrives at the height of the center O. The surrounding water
also rises together with this cluster of water, as shown in Fig. 3.12(b).
As time goes on, the cluster of water (denoted as a black dot) arrives
at the position just above the center O, the position at the top of
the wave surface, as shown in Fig. 3.12(c).

In the neighborhood of the surface of a water wave, a cluster
of water at each position moves along a circular path, as shown in
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The direction of water propagation |::>

P kS
¥  |wt > Water
The water surface K \ surface
when there is no wave -71---#~---r-

\ O '
\/a ,

Water surface W
(a) (b) (©)

The velocity of the wave, V I:>

The water surface
when there is no wave &

Fig. 3.12.

Fig. 3.12(d). Suppose the water surface at a certain moment is shown
by the solid wavy line in Fig. 3.12(d). Clusters of water on the surface,
some of which are shown by black dots, follow circular orbits and
move to the positions shown by white dots. The broken wavy line
formed by connecting these white dots indicates a new water surface.
Note that the water surface represented by the broken wavy line is
also obtained by translating the water surface represented by the
solid wavy line. In the following problems, we denote the radius of the
circular orbit as a and the angular frequency of the circular motion
of water as w (unit: radian).

(1) The period of a wave is that of the oscillating medium. We denote
the wavelength as A. Express the velocity of a wave, V', in terms
of its amplitude a; its angular frequency, w; or its wavelength, A.

Let us look at the behavior of a water wave, particularly, its
circular motion in the frame of reference moving to the right at a
velocity, V', together with the propagation of the water wave, as
shown in Fig. 3.13. In this frame of reference, the water surface
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Water surface of The velocity of circular motion, aw
stationary wave

The water surface
when there is
no wave

The velocity of water flow

The velocity of the wave, V

Fig. 3.13.

is at rest, keeping its waveform. In the coordinate used in Fig. 3.12,
the centers of the circular motion of water clusters are fixed on a
horizontal axis. However, we note that the centers of the circles in
Fig. 3.13 move to the left at the velocity V. Therefore, the motion of
water in this frame is described by the superposition of the circular
motion of radius a and the horizontal motion to the left at the
velocity V.

As shown in Fig. 3.13, there is an arrow on each white dot
directed along the tangential line of its corresponding circle, and
it denotes the velocity vector of the circular motion of the cluster of
water at that point. The net velocity vector is the sum of two vectors,
namely, the previously mentioned velocity vector of magnitude aw
(circular motion) and the uniform velocity moving toward the left
V. Also, we should note that at each point, the direction of the sum
of these two vectors corresponds to that of the water surface. As
an example, the net velocity vector at the white small dot As on
the circle O9 is the vector sum (shown by a white-arrow vector) of
two black-arrow vectors in Fig. 3.13. So, it turns out that in this
reference frame, clusters of water move up and down along the water
surface. However, we note that this description is valid only when
the magnitude of the velocity vector of the circular motion is smaller
than the magnitude of the uniform velocity vector, namely, i.e., only
when the relation aw < V' is satisfied.

(2) Suppose each white dot shown in Fig. 3.13 represents a cluster
of water with mass Am. When the clusters are located at the
two positions A; and Ajs, derive the expressions for the speeds
at these two positions in terms of physical quantities a, w
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and V. Then, write down the equation that expresses the law
of conservation of mechanical energy. Notice that no forces other
than the gravitational force are acting on the water. Denote the
gravitational acceleration as g.

(3) By using the results of part (2), derive the relation between the
velocity, V', and the wavelength, A.

(4) Using the result of part (3), evaluate the wavelengths of two
waves with periods of 5s and 10s, respectively. Take the
gravitational acceleration as g = 9.80 m/s“.

Generally speaking, the laws in physics are relations between
various physical quantities. The units for mass, [M]; length, [L]; and
time, [T], are the fundamental units in mechanics. Some derived
units such as those for velocity, [LT ], acceleration, [LT~?]; density,
[ML_3]; etc., are also used. Suppose quantity “C” has a unit that is
the product of the pth power of the unit of length, the gth power
of the unit of time and the rth power of the unit of mass, i.e.,
[C] = [LPTIM"]. Such a relation between units is called a dimensional
relation. Analysis based on dimensional relations is frequently useful
to derive relations between physical quantities.

(5) Assume that the wave velocity, V', depends only on the density of
water, p; the gravitational acceleration, g; and the wavelength, A.
Then, the dimension of V' is [V] = [pP][¢?][\"]. By rewriting this
relation in terms of the fundamental units, first find p, ¢ and r,
and then confirm the result of part (3). If a dimensionless number
(constant) is involved in the result of part (3), regard it as unity
and compare the two results.

(the 2nd challenge)

Solution

(1) We denote the wave frequency as f. Using the relations V = f\
and w = 2n f, the wave velocity is

V_)\w

- (3.28)
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(2) Since the velocity at the crest As of the wave is V — aw and
that at the trough Ay is V + aw, from the law of conservation of

mechanical energy, we have

1 1
§Am (V — aw)* +2Am - ga = §Am (V4 aw)?. (3.29)

(3) From Eq. (3.29), we have the relation wV = g. Using this relation
together with Eq. (3.28), we obtain the relation between the wave
velocity, V', and the wavelength, A\, as

V=4/2Z. (3.30)

It turns out that the wave velocity does not depend on the
depth of the water but depends only on the wavelength.

(4) From Egs. (3.28) and (3.30), we obtain the relation A= T2
Therefore, the wavelengths are A=39 m for T=5 s and A =
156 m for T'=10 s, respectively.

(5) Since we assume that the wave velocity, V', depends only on
the density, p; the gravitational acceleration, g; and the wave-
length, A\, we consider the relation V o pPg9\". If we represent
the dimensions of time, length and mass by [T], [L] and [M],
respectively, the dimensions of the velocity, the density, the
gravitational acceleration and the wavelength are, respectively,

Substituting these relations into the relation V o pPg?\" yeilds
[T]7HL) = [T)~>L) PP,

From this relation, we obtain p = 0,¢ = 1/2 and r = 1/2. Finally,
we have V = 4/g\. This result agrees with that obtained in part
(3), apart from a numerical factor. u

Problem 3.4. The dispersion of light and refractive index

As shown in Fig. 3.14, a ray of white light incident on a triangular
glass prism separates into red, yellow, and violet rays (in ascending
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Red

Violet

Fig. 3.14.

order of refraction angle). This is called the dispersion of light.
It is caused by the different refractive indices of glass for different
wavelengths of light, or equivalently, by the dependence of the speed
of light in glass on its wavelength. Let us consider the cause of such
phenomenon.

Light is an electromagnetic wave. The speed of light in a medium

of permittivity € and of permeability p is, in general, given by
1
NGz
respectively, and let e, = % be the relative permittivity of glass
at a particular wavelength of lights A. Let us assume that the

relative permeability of glass AL% is always unity, independent of the

. Let ¢9 and pg be the vacuum permittivity and permeability,

wavelength of light. If we denote the speed of light in vacuum as
¢, and that in a certain medium as ¢/, then the refractive index
of the medium, n, is defined as n = 5. Let us assume that ¢ =
2.998 x 108m/s and that the refractive index of air is equal to 1.

(1) Show that ng, the refractive index of glass at wavelength A,
satisfies the relation

n2 = ..
(2) Let us consider a parallel-plate capacitor whose capacitance in
vacuum is Cy. When the space between the plates is filled with a
glass of relative permittivity e,, the capacitance of the capacitor
becomes C' = ¢.Cy. Let Ey be the magnitude of the electric
field between the plates of a capacitor of capacitance Cy when
an electric charge of @ is loaded onto the plates (+@ on one

plate, and —@ on the other plate). Find E, the magnitude of the
electric field between the plates when the parallel-plate capacitor
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v
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Glass

Fig. 3.15.

is filled with glass and electric charge of @ is loaded onto its
plates. Express the answer in terms of Ey and ¢,.

Here, we assume that the interval between the plates is
sufficiently narrow as compared with their areas so that the
electric field can be regarded as being perpendicular to the plates.

When an electric field, Fe, is externally applied to a rectangular
parallelepiped glass of relative permittivity e, both positive and
negative charges appear on the sides perpendicular to the electric
field as in Fig. 3.15 (let ¢, be the positive charge per unit area,
and —¢, be the negative one). This is comprehended as follows.
The electric field causes a deviation of the centers of the positive
and negative charges of the atoms composing the glass to yield the
appearance of the charges on both sides. This is called polarization.

We assume that the polarization is caused by a displacement of
a charged particle of mass m and charge ¢(>0) from its equilibrium
position (z = 0). Further, we may assume that a restoring force of
—kx, which is proportional to the displacement x, acts on the particle
at the position z.

(3) Suppose the charged particle oscillates only under the restoring
force given above. Denote the acceleration at the position = as
«. Formulate the equation of motion of the particle and find the
angular eigenfrequency, wy.

(4) When an oscillating electric field E(t) = Epcoswt (Ep>0) is
applied to the charged particle considered in part (3), the particle
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exhibits a simple harmonic oscillation and its position is given
by x(t) = Acoswt where A is a constant. Express the amplitude
of this oscillation, A, in terms of w and wy.

The polarization charges that appear on the sides of the glass
by polarization, +q,, are proportional to the displacement of
the charged particles, x. Further the electric field in the glass
produced by the polarization charge, Ej, is proportional to gp.
Thus, we can write £, = bx where b is a positive constant.
Express ng, the refractive index of glass, in terms of w and wy.
Furthermore, explain why the dispersion of light is caused by the
glass prism.

Let us assume that the model we considered can be applied to
an optical glass called FK1. By using the measured refractive
index of the glass for visible light in air, which is shown below,
calculate wq, the angular eigenfrequency of the glass, and Ag,
the wavelength of light in air related to wg, to three significant
figures.

Wavelength (m)  7.682 x 10~7  5.876 x 107 4.047 x 10~7

Refractive Index  1.466 1.471 1.482

(the 1st Challenge)

Solution

(1)

(2)

1
N
of glass at wavelength A be € and the permeability at wavelength

A be (= pp). Since the speed of light with a wavelength of A in

The speed of light in vacuum is ¢ = . Let the permittivity

glass is cqg = \/1€_u’ we obtain
c EHR 2
ng=—=,/—— =+ .. ng=-=c.
CG oMo

The capacitance of the capacitor, C, is defined in terms of the
voltage applied to the capacitor, V', and the stored charge, @, as
C = % Therefore, for a given stored charge, the voltage between
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the plates is inversely proportional to the capacitance. Since the
magnitude of the electric field is £ = % where d is the interval
between the plates, we have, by denoting the voltage between
the plates of the capacitor of capacitance Cy as Vj,
E vV C C E
VYV _SG_ % . p_k

Ee Vo C &Cy &

The equation of motion of the charged particle at position x is

k
ma=—kr . a=-——1=—wi.
m

Therefore,

When the oscillating electric field is applied, the equation of
motion of the charged particle is

ma = —kx + qE(t)

= —mwiz + qEy cos wt.

Since z(t) = A coswt, the acceleration is

a = —Aw? cos wt.
Therefore, we have
E 1
A= 250 S
m  wi—w

When an external electric field, Fex(t), with an angular frequency
of w is applied to the glass, the electric field in the glass, E(t), can
be written by using the electric field caused by the polarization
charge, E,(t) = bx(t), as

E(t) = Eex(t) — Ep(2).
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Then, the relative permittivity of the glass, ¢, becomes

Eey(?) Ep(t) x(t)
= =1 —14b—n
By TEO UER
A q 1
—14+b =14bL .
+ Ey + m wi—w?

Hence, we get

q 1
= =,/14+b—  ——. 3.31
nG = yer \/ to 2 w2 (3.31)

The angular eigenfrequency of glass molecules, wg, is larger
than that of visible light, w. Therefore, the refractive index
of glass for visible light, ng, is larger than unity. Among
visible light, the angular frequency of red light, which has a
relatively long wavelength, is far away in value from the angular
eigenfrequency of glass and this results in a relatively small
refractive index, whence a small refractive angle. In contrast,
the angular frequency of violet light, which has a relatively small
wavelength, is close in value to the angular eigenfrequency of
glass and this results in a relatively large refractive index, whence
a large refractive angle.

From Eq. (3.31),

2 wy
n=14—-——, 3.32
w% — w? ( )
where wf, = bL and the angular frequency w can be written in
terms of wavelength, A\, as w = % (c is the speed of light in
vacuum).

We denote the angular frequencies corresponding to some
wavelengths A1 and Ao as wi and ws, respectively. Then, from
Eq. (3.32),

wy = (n] = 1)(wf —wp)

= (nj — 1)(wj — w3),
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and we get
2 2 2 2
-1 — -1
UJ(Z] _ (n2 )wg (";1 )wl ) (333)
ng —ng

The wavelength of light in air related to wg, Ag, is
2
No = 26 (3.34)
wo
After substituting A\; = 7.682x 10™" m, n; = 1.466, Ay = 5.876 x
10~" m, and ny = 1.471 in Eq. (3.33) and using Eq. (3.34), we get

wor = 1.86 x 10'%rad/s, Aog; = 1.01 x 10~ " m.

Similarly, after substituting \; = 5.876 x 10~"m, n; = 1.471,
Ay = 4.047 x 107" m, and ny = 1.482, we get

wo2 = 2.07 x 100 rad/s, Mgz = 0.91 x 10~ " m,

and finally, after substituting \; = 7.682 x 10~ m, n; = 1.466,
Ao = 4.047 x 10~ " m, ny = 1.482, we get

woz = 2.01 x 100 rad/s, Aoz = 0.94 x 10~ " m.

For visible light of wavelength A\(> )\g), the above simple model
nearly explains the dispersion of light by a glass prism. [
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Chapter 4

Electromagnetism

Elementary Course

4.1. Direct-Current Circuits

4.1.1. FElectric Current and Resistance
Definition of the unit of current and Ohm’s law

The unit of current is defined in terms of the attractive force between
two currents flowing in a parallel direction (Fig. 4.1). This will be
described in detail in Sec. 4.4.3 of the advanced course.

Suppose the attractive force acting between two identical
straight, parallel currents located one meter apart from each
other is 2 x 1077 N for every meter of wire. Then, we define
the amount of this current to be 1 A (ampere).

An electric current of 1A carries an electric charge of 1C
(coulomb) in 1s. When the energy needed to carry an electric charge
of 1C against a potential difference (also called voltage) is 1J
(joule), this potential difference is defined to have a value of 1V
(volt). When a voltage of 1V is applied to a conductor, and a current
of 1 A flows in the conductor, the electric resistance of the conductor

—> <
IA| %107 N [1A [Im

1m

Fig. 4.1.

123
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is defined to have a value of 1 Q2 (ohm). The resistance of a conductor,
R, is defined in terms of the voltage applied to the conductor, V', and

Vv

the current flowing in the conductor, I, as R = +. This relation can

alternatively be expressed as
V = RI. (4.1)

When the resistance of the conductor, R, is independent of the
applied voltage, V', or the electric current, I, it is said that the
conductor satisfies Ohm’s law, and such a resistance is called a
linear resistance or an ohmic resistance. The resistance of some
conductors varies with voltage or current, and such a resistance is
called a non-linear resistance or a non-ohmic resistance.

Resistivity

The resistance of a conductor, R, is proportional to its length, [, and
inversely proportional to its cross-sectional area, S:
l

g

Here, the factor p (its SI unit is £2-m) is called the resistivity of

the conductor. The value of resistivity depends on the material and
its temperature.

R=p (4.2)

4.1.2. Resistors in Series and in Parallel

When n resistors of resistances Ry, Rs, ..., R, are connected to one
another in series, the combined resistance, R, is equal to the sum of
their individual resistances:

R=Ry+ Ry+ -+ R,. (4.3)

Resistance is a measure of the difficulty for current flow in
the conductor.

When n resistors of resistances Ri, Rs, ..., R, are connected to
one another in parallel, the combined resistance, R, is given by the
relation

111 |
4 4.4
R R " TRy (4:4)
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where % is called a conductance, a measure of the ease for current
flow in the conductor. The unit of conductance is S (siemens). The
total conductance of resistors connected in parallel is equal to the
sum of their individual conductances.

Example 4.1. By using the definition of resistance, find the
combined resistances of resistors Ry, Ro connected to each other in
series and in parallel.

Solution

In the case of series connection, as shown in Fig. 4.2, let the voltages
applied to the resistances Ry and Ro be Vi and V5, respectively.
The same amount of current, I, flows through Ry and Rs. From the
definition of resistance, Eq. (4.1), we get

Vi =R, Va=Rol.

R,
v,
XL-- \%4
R
2 v,
I -Y____Y__
Fig. 4.2.

Since the total voltage, V, is V. = Vi + V5, the combined
resistance, Ry, is

V Vith
B=F="7

In the case of parallel connection, as shown in Fig. 4.3, the same
voltage, V, is applied to R; and Rs. Let the currents flowing through
Ry and Ry be I} and I, respectively. Then, we set I} = Rll and

= R; + Ro.

I, = R%. Let the combined resistance be R},. Since the total current,
1,is I = Iy + I, from the relation [ = Rlp, we get

|4 |4 \%4 1 1 1

=— 4+ == = —.
Ry, R R R, R R
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I, I,
R, R, |V
I
Fig. 4.3.
Then,
RiR
R, = e [ |
Ry + Ry
4.1.3. Kirchhoff’s Rules
Kirchhoff’s junction rule
At any junction in an electric circuit,
(The sum of incoming currents)
= (The sum of outgoing currents) (4.5)

This relation is called Kirchhoff’s junction rule. It implies the
conservation of currents.

Kirchhoff’s loop rule

The influence that makes a current flow from a lower to a higher
potential is called an electromotive force (emf).
In any closed loop of an electric circuit,

(The sum of emfs) = (The sum of voltage drops) (4.6)

This relation is called Kirchhoff’s loop rule. It implies that, once
we select a point at which the electric potential-potential energy per
unit charge — is set as zero, the electric potentials of any other points
are automatically determined.

4.2. Magnetic Field and Electromagnetic Induction

Here, we will describe magnetic field and electromagnetic induction
without using equations. Details are described in Sec. 4.4 of the
advanced course.
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4.2.1. Magnetic Field

A permanent magnet produces a special field around the magnet
in which magnetic forces act. This field is called a magnetic field
whose direction is the N-pole direction of a compass. An electric
current produces a magnetic field that points clockwise around the
current as shown in Fig. 4.4. If a current flows through a solenoid as
shown in Fig. 4.5, a magnetic field that passes through the solenoid
and points in the rightward direction is produced. The curves drawn
to represent a magnetic field are called magnetic field lines.
Magnetic field lines point outward from the N-pole of a permanent
magnet and point inward to the S-pole; they neither disappear nor
intersect one another (Fig. 4.6).

Forward direction
A Current of the screw
Magnetic
,A-"~~)\ field
/
" . ,4’ Rotational direction
S~ of the screw
Magneticifield line
Fig. 4.4.

Magnetic field lines

ey
TN

Fig. 4.6.

Magnetic field

Fig. 4.5.



128 Physics Olympiad: Basic to Advanced Exercises

4.2.2. Magnetic Force on Current

A magnetic field exerts a force on a current. If the magnetic field is
in the direction of the index finger of a left hand and the current is
in the direction of the middle finger as shown in Fig 4.7, then the
force on the current is in the direction of the thumb. This rule is
called Fleming’s left-hand rule. A motor utilizes the force on a
current-carrying coil in a magnetic field to rotate the coil.

F(ice
Magnetic
iﬂ@’-’ field
Current
Fig. 4.7.

4.2.3. Electromagnetic Induction

As shown in Fig. 4.8, an emf appears in a coil when a bar magnet
moves either toward or away from the coil. Then, an electric current
flows in the direction of the emf. This emf is called an induced
emf. This phenomenon is called electromagnetic induction.
Electromagnetic induction appears when the number of magnetic
field lines through the coil vary with time. The emf is induced to
prevent the change in the magnetic field lines through the coil, and
its magnitude is proportional to the instantaneous rate of change of
the magnetic field lines through the coil.

Example 4.2. Which is the current direction, a or b, when the N
pole of a bar magnet approaches a coil from the right side, as shown
in Fig. 4.87 Which is the current direction, a or b, when the N pole
of a bar magnet recedes from a coil to the right side?



Electromagnetism 129

Current

X N I s |

N
/

Fig. 4.8.

Solution

When the N pole of the bar magnet approaches the coil from
the right side, the number of magnetic field lines through the coil
pointing in the leftward direction increases. Then, a current in the
direction of b is induced so as to prevent the magnetic field lines from
increasing. When the N pole of the bar magnet recedes from the coil
to the right side, the number of magnetic field lines through the coil
pointing in the leftward direction decreases. Then, a current in the
direction of a is induced so as to prevent the magnetic field lines from
decreasing. [

Elementary Problems

Problem 4.1. A circuit with two batteries

Fill the boxes [a] through in the following sentences with the
appropriate numerical values. Suppose we make a circuit with two
batteries (Ei, Eg) of emf 3V and with two resistors Rj, Ry of
resistance 6 () as shown in Fig. 4.9.

The electric potential at point C is [a] V higher than that at

point B. The electric potential at point A is E V higher than that
at point C. Therefore, the electric potential at point A is|c|V higher

than that at point B. Then, the current through Ry is @ A and that
through Ry is [e] A. Consequently, the current through Ep is |f| A
and that through Eq is [g] A.

(the 1st Challenge)
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A 1 B
e
R
Ry
T

C

. %

Fig. 4.9.
Answer a=3,b=3,¢c=6,d=05,e=1,f=15,g=1

Solution

As shown in Fig. 4.10, let the current through R; flowing from
point A to point B be I; and that through Ry flowing from point C
to point B be I5. Also, let the potentials at points A, B and C be
Va, Vg and V, respectively.

1
A :’ B
. -
R; I,
Ry
T T
¢
Fig. 4.10.

a. The potential at point C is Vo — Vg = Eo = 3V higher than that
at point B.

b. The potential at point A is VA — Vo = Fy = 3V higher than that
at point C.

c. The potential at point A is Vo — Vg = E1 + E5 = 6V higher than

that at point B.

The current through Ry is Is = (Vo — VB)/R2 = 0.5 A.

The current through Ry is Iy = (Va — VB)/Ry = 1 A.

The current through Es is Iy + I, = 1.5 A.

The current through Eq is I; = 1 A. m

R - o &
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Supplement

By using Kirchhoff’s loop rule to the closed loop E; = A—B—C—E;
and E2 —>C—>B—>E2, we get E1 :RIII — RQIQ and EQ :RQIQ. Sub-
stituting £y = F5 =3V and R; = Ry =06f) into the above equations,
we get [y =1A and I, =0.5A.

Problem 4.2. A three-dimensional connection
of resistors

Suppose we make a frame of a regular tetrahedron using six resistors
with the same resistance, r, and apply a voltage of V between point O
and point M as shown in Fig. 4.11. Then, a current, I, flows into
point O and flows out of point M. Note that the resistance is propor-
tional to the length of the resistor, and the contact resistance may
be assumed to be negligibly small. M is the midpoint of resistor BC.

I

Fig. 4.11.

(1) Express the current that flows from point O to point B, i, in
terms of the current I. In addition, express the currents from O
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to C, from O to A, from A to B, from A to C, from B to M and
from C to M in terms of I, respectively.
(2) Find the combined resistance between O and M.

(the 2nd Challenge)

Solution

(1) From the symmetry of the frame, we can assign the currents
in the edge of the tetrahedron as shown in Fig. 4.12. By using
Kirchhoff’s loop rule, we get

1
m’zr(i—z)+7’(I—2i)zr<%[—3i>,

3
=21
T3

The currents are, respectively,

1
O0—C: iz%], 0O—A: I—QiZZI,

Fig. 4.12.
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A—B: g—i:éf, A—C: g—i:g,
B—>M:é7 C—>M:é.
(2) The voltage between points O and M, V', is expressed as
V:g-g—kriz%—kr-glzgrl,
-.R:?:?:é 7

Alternative solution

From the symmetry of the frame, we can redraw the circuit as shown
in Fig. 4.13, because the electric potential at point B is the same as

|o

Fig. 4.13.
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that at point C. Using the combined resistance in parallel connection,
we find that the resistance between points A and B or C is equal to
r/2. Then, we obtain the combined resistance between points O and
B or C, Ry, as follows:

1 1,1 1 3

— ==+ += .
R v 745 7 8

The combined resistance between points B or C and M, Ro, is
Ry = 7. Then, the total resistance is

R:Rl—i—RQ:gT

Problem 4.3. A hand dynamo

A hand dynamo, shown in Fig. 4.14, can generate electricity when
its handle is rotated, and a lamp can be lighted when connected to
the terminal clips of a electricity-generating hand dynamo.

When we connect a battery to the clips of a dynamo, its handle
rotates spontaneously. When we connect two hand dynamos by their
clips to each other and rotate the handle of one dynamo, the handle
of the other dynamo also rotates.

\
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(1) Which equipment has properties similar to a hand dynamo?
Choose the best answer from (a) through (d).

(a) Battery
(b) Capacitor
(¢) Motor
(d) Coil

When we connect a capacitor to the terminal clips of a hand
dynamo and rotate its handle, the generated electricity is stored in
the capacitor. After a sufficient amount of electricity is stored in the
capacitor by several rotations of the handle, we release the handle.

(2) What will occur after the release? Choose the best answer from

(a) through (d).

(a) The handle keeps rotating in the same direction as its
previous rotation.

(b) The handle rotates in the direction counter to its previous
rotation.

(¢) The handle stops immediately.

(d) The handle rotates alternately between the same direction
and the counter direction.

(3) Suppose we connect a hand dynamo, a lamp, a switch and a
battery as shown in Fig. 4.15. When we switch on the circuit,
the handle of the hand dynamo rotates and the lamp lightens.
When we stop the handle, the lamp becomes brighter.

Choose the best reason from (a) through (e).

Hand dynamo Lamp

Battery

Switch
i—>

Fig. 4.15.
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(a) The energy consumed to rotate the handle is utilized for
lightening the lamp when the rotation is stopped.

(b) A large current is supplied to the circuit to rotate the stopped
handle.

(c) Frictional heat energy that is generated by the rotation is
used to lighten the lamp when the rotation is stopped.

(d) The internal resistance of the dynamo decreases when the
handle is stopped, and a large current flows.

(e) The emf (in the counter direction) induced in the dynamo
disappears when the handle is stopped, and a large current
flows.

(the 1st Challenge)

Answer (1) (c), (2) (a), (3) (e)

Solution

(1)

A hand dynamo has a motor inside; it is a motor with a handle
connected to a coil. Permanent magnets are fixed inside the
motor and by applying an external force on the handle, the coil
rotates between the N and S poles of the magnets. The rotation
of the coil changes the number of magnetic field lines through
the coil, and an emf is induced in the coil. When we supply a
current to the motor, the coil in the motor generates a magnetic
field, and attractive and repulsive forces act between the coil
and the permanent magnets. As a result, the coil rotates. When
two hand dynamos are connected to each other by their terminal
clips and one of the handle is rotated to generate electricity,
an induced current flows into the motor of the other dynamo
and rotates the handle that is connected to the coil of the other
dynamo.

After the capacitor is charged up by the electricity generated
by the hand dynamo and the handle is released, a current flows
from the capacitor into the motor of the dynamo. As a result,
the handle continues to rotate until the capacitor discharges
completely, and the current decays to zero. This current rotates
the motor in the same direction as before. The rotation stops
once the capacitor is completely discharged.
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(3) When the rotation of the handle in the dynamo is stopped,
the induced emf in the direction that reduces the induced
current in the dynamo disappears. As a result, the total current
in the circuit increases. Then, the work done by the battery
increases (and the Joule heat generated in the dynamo also
increases). u

Advanced Course
4.3. Electric Charge and Electric Field

We say that there is an electric field in the space around a static
charged body when there is an electric force acting on the body.
We also say that a point charge produces an electric field around it
because a point charge exerts electric forces on other charged bodies
around it. When an electric force, F, is exerted on a test charge, g,
we define the electric field (at the point where the charge is placed),
E. by

F =(E. (4.7)

4.3.1. Gauss’s Law

We consider the electric field produced by a point charge, whose
size is negligible, in vacuum. When a point test charge, ¢, is placed
at P, a point located at a distance r from a point source charge, @,
the electric force that two charges ¢ and @) exert on each other is

qQ

F=_-T<_
dmegr?’

(4.8)
where ¢ (epsilon zero) is a constant and is called the permittivity
of vacuum. Equation (4.8) is called Coulomb’s law. As shown in
Fig. 4.16(a), the force between ¢ and @ is repulsive when ¢@ > 0
and attractive when ¢@Q < 0.

After dividing both sides of Eq. (4.8) by ¢, we get E, the electric
field at point P:

Q

=< 4.
4megr? (4.9)
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F E
Qg>0 q 0>0 /

Q .- /P =P
" O™ r/

(a) (®)

Fig. 4.16.

The electric field £ points from the charge @@ to point P when
Q@ > 0 (see Fig. 4.16(b)).

It is useful to use electric field lines for visualizing an electric
field. An electric field line is a curve or line whose tangent at point
gives the direction of the electric field vector, E, at that point. The
number of electric field lines through a unit area perpendicular to F
is equal to the magnitude of E. Electric field lines are directed away
from positive to negative charges, never intersect one another, and
are never created nor annihilated in vacuum.

We call a flux of electric field lines an electric flux. The electric
flux is a measure of the flow of an electric field and is expressed in
terms of the number of electric field lines.

Example 4.3. An electric flux radiates out through a spherical
surface of radius r centered on a positive point charge, ). Show
that the electric flux through the spherical surface is Q/eo.

Solution

As the magnitude of the electric field on the surface of a sphere of

radius r is #, the electric flux through a unit area of the surface

is #. The area of the sphere is 4772, so the total electric flux

through the surface is

47rr? X 5 = Q
4megr €0

(4.10)
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This result is called Gauss’s law. In the above, we have
considered a spherical surface in which a point charge is at the center
of the sphere, but we can obtain the same result even when the point
charge is not at the center as long as it is inside the sphere. Further,
it is not necessary that the shape of the closed surface be spherical.
We can formulate Gauss’s law in an integral form by integrating the
inner product of E, the electric field vector, and AS, the vector
perpendicular to a small surface AS (see Fig. 4.17):

ZE-AS;»/E.dSZQ. (4.11)
AS S €0
AS
E
S
Fig. 4.17.

The integral on the left hand side of Eq. (4.11) is called a surface
integral, and this result can be extended to any closed surface
enclosing any number of charges. When () > 0, the net electric flux is
pointing outward from @ and is equal to @ /ep; (when @ < 0, the net
electric flux is pointing inward toward @ and is equal to QQ/eg). The
value of the left-side integral depends on the total enclosed charge,
which can either be distributed discretely or continuously.

Example 4.4. A positive electric charge is distributed uniformly
along an infinitely long, thin and straight wire. The charge per unit
length is A > 0. As the wire is infinitely long, the generated electric
field, E, is perpendicular to and symmetrically pointing outward
from the wire. As shown in Fig. 4.18, we consider a cylindrical region
of length L and radius r.

(1) Find the net value of the electric flux outward through the curved
surface of the cylinder in terms of the magnitude of the electric
field E on the surface, Further, find the total magnitude of the
charge inside the cylinder in terms of \.
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e

Fig. 4.18.

(2) Using Gauss’s law, find the magnitude of the electric field E at
a distance r from the wire.

Solution

(1) The electric field E is outward and uniform on the curved surface
of the cylinder due to symmetry. Since the electric flux per unit
area on the surface is F, the net value of the outward electric
flux through the surface is equal to £ multiplied by the surface
area 2mrL, and thus, the answer is 2arLE.

The total charge contained in the cylinder is AL.

(2) By applying Gauss’s law to the cylinder, we have

2nrLE = AL /ey.
Thus, the magnitude of the electric field on the curved surface
of the cylinder, F, is
A

FE = . [ |
2mwegr

Example 4.5. Extend the previous example, Example 4.4, to a thin,
flat infinite plane with a uniform surface charge per unit area, o, as
shown in Fig. 4.19. The electric field E is normal to the plane due
to the infinite size of the plane, and it is symmetric on both sides of
the plane. Find the magnitude of E at a distance r from the plane.

Solution

As shown in Fig. 4.19, we consider a cylinder (perpendicular to the
plane) of a unit cross-sectional area. The electric field is normal to the
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E

E

Fig. 4.19.

plane, so there is no flux through the curved surface of the cylinder.
There is only an outward flux through both of the flat surfaces of the
cylinder. Since we can write Gauss’s law as 2E = o /e, we have

E=—"—. (4.12)

Note that this electric field is independent of r. [ |

4.3.2. Capacitors and Energy of Electric Field

A capacitor is a device that stores electric charge. Metallic plates
storing charge are called capacitor plates.

Example 4.6. As shown in Fig. 4.20, two charges of equal magnitude
and opposite signs, £@), are separately loaded onto two large parallel
plates of area S. The distance between the plates is D.

(1) Find E, the magnitude of the electric field between the plates.

(2) Express U, the electrostatic energy stored in the capacitor, in
terms of g9, E, D and S.

(3) The electrostatic energy U is considered the energy of the electric
field. Find w, the energy of the electric field per unit volume
between the two plates.

We call this the energy density of the electric field.
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Fig. 4.20.
Solution

(1)

The electric field outside the two parallel plates is zero because
the two electric fields E; and E_ are of equal magnitude, o/2¢,
(since they are generated by the same charge density, o = @/,
on the plates) and cancel out (since they point in opposite
directions). The electric field between the two parallel plates is
given by the superposition of £, and F_, which are in the same
direction, and thereby is

E=E,+E =—*. (4.13)

When the capacitor stores a charge of ¢, the electric field between
the capacitor plates, E, is E = ¢q/¢¢S. In order to increase the
stored charge from ¢ to ¢ + dg, it is necessary to move a small
charge of dg against an electric force of Edq over a distance of
D. Then, a work done of EDdq is added to the energy of the
capacitor. The total work needed to increase the charge of the
capacitor from 0 to @ is

Q D [9 D @Q?
= EDdq = — dg = —5—.
v A 1 605/0‘ 494 605 2

This is the electrostatic energy stored in the capacitor.
By using @ = €9 SFE, we have

U=5SD- %aOEQ. (4.14)
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(3) As the volume of the capacitor is DS, the energy density of the
electric field, u, is

1
u = §5OE2. (4.15)

Suppose a charge of () is stored in a capacitor to which an electric
potential difference of V is applied. Then,

Q

Va
is called the capacitance of the capacitor. When an uniform electric
field of magnitude F is produced between two parallel, charged plates

separated by a distance of D, the potential difference between the
plates, V', is V.= ED. So, from Egs. (4.13) and (4.16), we have

C = (4.16)

E()S
C=—. 4.17
o (417)
Further, the electrostatic energy of the capacitor is
2
o Q7 1
—QV. 4.1
U= C’V =50 2QV (4.18)

4.4. Current and Magnetic Field
4.4.1. Magnetic Field Generated by Current in Straight Wire

We say that there is a magnetic field in the space around a moving
charged particle when a magnetic force acts on the particle. The
characteristic physical quantity for the magnetic field is the magnetic-
flux-density vector, B. Hence, we use the quantity B as the magnetic-
field vector. There are magnetic field lines, whose tangent gives the
direction of the magnetic field, just like electric field lines. We define
the magnitude of B as the number of magnetic field lines passing
through a unit area perpendicular to B.

When a current of I flows in a straight conducting wire that is
infinitely long, the magnitude of the magnetic field, B, at a distance
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r from the wire in vacuum is

_ ol
2rr’

B (4.19)

where g is called the permeability of vacuum, and the magnetic
field encircles the current in the clockwise direction (to which a right-
handed screw that advances to the direction of the current rotates),
as shown in Fig. 4.4. The speed of light in vacuum, ¢, is related to
o and g¢ as

2= (4.20)

(see Problem 4.4).

4.4.2. Ampere’s Law

We consider a straight conductor carrying a current of I. The
magnitude of the magnetic field, B, on the circumference of radius
r in a plane perpendicular to the conductor can be written, from
Eq. (4.19), as

B - 2mr = pol. (4.21)

That is, the product of the length of the circumference and
B is equal to ppl. We can extend this relation to the following
representation.

Let us consider a long straight current, I, and the magnetic field
caused by it on a closed path in a plane perpendicular to I. As shown

(a) (b)

Fig. 4.21.



Electromagnetism 145

in Fig. 4.21(a), we divide the closed path into several small segments
of length Al. In general, it is not necessary for the direction of B,
the magnetic field caused by I, to coincide with that of Al, a small-
segment vector of the closed path (Al is shown in Fig. 4.21(a)).
Now, we replace the left-hand side of Eq. (4.21) by the sum of
inner products of B and Al. Further, we extend the current of the
right-hand side of Eq. (4.21) to the total current I through the area
enclosed by the path. The law obtained in such a way is known as
Ampere’s law (see Fig. 4.21(b)).
Ampere’s law is expressed, for any closed path C, as

ZB-AI:%B-dl:MOI. (4.22)
C C

The integral in Eq. (4.22) is called the line integral of the
magnetic field along the closed path C'.

Example 4.7. A flat-plane conductor that is infinitely wide carries
a uniform current per unit width, j (|]j| = j), which produces a
uniform magnetic field, B, parallel to the plane and perpendicular to
the current. Consider a closed loop as shown in Fig. 4.22. The shape
of the loop is rectangular and the rectangular plane surrounded by
the loop is normal to the current. The lengths of the upper and lower
edges are L. By using Ampere’s law (Eq. (4.22)), find the magnitude
of the magnetic field at the upper and lower edges.

Solution
The line integration of the magnetic field along the loop gives 2B L,

and the current passing through the rectangular plane is equal to jL.

B Closed
loop
/

Plane
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Fig. 4.23.
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Fig. 4.24.
So, from Eq. (4.22), we have
9BL = il .-.B:%. m

Example 4.8. As shown in Fig. 4.23, the magnetic field caused by a
current, I, in an infinitely long solenoid wound on a hollow cylinder is

B = ponl inside the coil, (4.23)
B=0 outside the coil, (4.24)

where n is the number of turns per unit length of the coil.

Derive Egs. (4.23) and (4.24) by using Ampere’s law and Fig.
4.24, which shows a cross section containing the central axis of
the coil. Here, the symbols ® and ® indicate that the current is
flowing out of the plane of the page and into the plane of the page,
respectively. Since the solenoid is infinitely long, we can assume that
both the magnetic fields inside and outside of the coil are parallel to
the center axis of the solenoid and that the magnitude of the magnetic
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field at a point is dependent only on the distance from the conducting
wire of the coil to the point. Moreover, take the magnitude of the
magnetic field at an infinitely large distance away from the coil as
ZEro.

Solution

As shown in Fig. 4.24, we apply Ampere’s law to a closed rectangular
loop A—=B—C—D—A. Here, edges AB and CD are sufficiently long,
and BC=DA =1. As the edges AB and CD are perpendicular to the
central axis of the coil, the magnetic field is perpendicular to AB and
CD. Therefore, the line integral from A to B and that from C to D

are zero:
/ Bdl = / Bdl = 0.
A—B C—D

Further, as the edge BC is infinitely far from the coil, we may
take B = 0 at any point on BC. The edge DA is parallel to the coil
axis. So, the magnitude of the magnetic field on this edge is constant,

and we have
del:/ Bdl = BI.
D—A

Now, as the number of turns of a solenoid of length [ is nl, the
current passing through the rectangular loop A—=B—C—D isnl- 1.
From Ampere’s law (Eq. (4.22)), we obtain

Bl = ponll = B = pgnl.

From this result, we find that only if the edge DA is parallel to
the central axis of the coil and is within the coil, the magnitude of
the magnetic field is independent of the position of DA and is given
by Eq. (4.23).

Next, we find the magnetic field outside the coil. To do this,
we apply Ampere’s law to the rectangular closed loop B'—=B—C—
(’'—B’. Because the edge C'B’ is parallel to the axis of the coil, the
magnitude of the magnetic field on this edge, B’, is constant. Thus,
because the current through the closed loop B'—-=B—C—C'—B’ is
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7€ero, we can write
f.Bdl:/ Bdl=-B1=0 = B =0.
l_)Bl

Also, since the distance from the wire wound around the coil to
C'B’ is arbitrary, the magnetic field outside the coil should be zero.
|

4.4.3. The Lorentz force

In a uniform magnetic field of magnitude B, the magnitude of
the magnetic force, F', that acts on a point charge of ¢ moving
perpendicularly to the magnetic field at a speed of v is

F = quB.

Suppose the point charge is positive, ¢ > 0. Then, as shown in
Fig. 4.25, if we let the left thumb, the index finger, and the middle
finger open at right angles to one another, and let the direction of
middle finger coincide with that of the velocity of the charge and
the direction of index finger with that of the magnetic field, then the
direction of the force is that of thumb.

In general, if a point charge of ¢ moves at a velocity of v in a
magnetic field of B, then the following magnetic force, f, acts on the

Force

|

Velocity of
a point charge

Fig. 4.25.
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charge:
f =qv x B. (4.25)

Here, v x B represent a vector product of v and B, (vector product
was introduced in Sec. 2.6). The force given by Eq. (4.25) is called
the Lorentz force.

When a charged particle with a charge of ¢ moves at a velocity
of v in the space where both an electric field of E and a magnetic
field of B are present, both fields exert an electromagnetic force of
f = q(E+wv x B) on the particle. This force is also called the Lorentz
force, in a broad sense.

The strength of a current is equal to the quantity of electricity
passing through a section of a conducting wire per unit time. When
the charge per unit length, A, is uniform along a straight wire and
the charges in the wire move at a velocity of v, the strength of the
resulting current, I, is

I =\ (4.26)

Consider a conductor carrying a current in a magnetic field. A
magnetic force acts on every charge moving in the current-carrying
conductor. As a consequence, we can regard this force as acting on
the conductor.

Example 4.9. As shown in Fig. 4.26, a straight conductor of length
a carries a current of I in a magnetic field of B perpendicular to
the conductor. Show that the magnitude of the force exerted on the

Fig. 4.26.
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conductor is
F = Bal. (4.27)

Solution

From Eq. (4.26), the charge contained in the conductor of length a is
Aa = al /v, and then, from Eq. (4.25), the magnitude of the magnetic
force exerted on the conductor of length a by the magnetic field is

F:ﬂxva:BaI. (4.28)
v
|

Example 4.10. As shown in Fig. 4.27, a positive point charge, ¢, is
moving at a velocity, v, in the same direction as a straight current, 1.
The distance between the current I and the charge ¢ is r. Find the
magnitude and the direction of the force exerted on ¢ by the magnetic
field induced by the current I.

Fig. 4.27.

Solution

As the magnitude of the magnetic field at a distance r from a current
Iis

ro (4.29)
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the magnitude of the Lorentz force exerted on the charge is

qul
= quB = pup——. 4.30
f=aquB = o5 (4.30)
The force is perpendicular to and points toward the current. [ |

From the previous example, we see that a force acts between
two parallel currents. As shown in Fig. 4.28, a current of Iy = [ is
flowing in (a straight) conductor 2. In (another straight) conductor 1,
separated by a distance r from conductor 2, a uniform positive charge
per unit length, )\, is distributed and is moving at a speed, v, in the
same direction as Is. Then the current in conductor 1, I1 = Av, flows
in the same direction as Is.

2 1
IZ = I‘L A Ilz /11)
r—
Fig. 4.28.

Now, by replacing ¢ with A in Eq. (4.30), we obtain the magnitude
of the force exerted on I; per unit length as
L1y

f= o5 " (4.31)

The force between I and I is attractive when they are in
the same direction, and repulsive when they are in the opposite
directions.

Equation (4.31) is utilized for the definition of the unit of current
as previously presented in Sec. 4.1. That is, when we set [y = I, =1
and 7 = 1m to have f = 2 x 107" N, we define the current I as
1 A. By this definition, we are led to choose the value for g to be
47 x 107" N/A? from Eq. (4.31).
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/ V \
Fig. 4.29.

4.4.4. FElectromagnetic Induction and Self-Inductance
The law of electromagnetic induction

As presented in Sec. 4.2, the magnetic flux (expressed by the number
of magnetic field lines) through a coil changes when we move a
magnet either toward or away from the coil. Then, an electromotive
force (emf) is induced and an induced current flows in the coil. This
phenomenon is called electromagnetic induction. It also occurs
when we move a coil either toward or away from a fixed magnet. This
phenomenon is generally stated as follows.

As shown in Fig. 4.29, let ® be the magnetic flux through a coil
of a single closed loop and V' be the induced emf. Let us define the
induced emf to be positive when its direction matches the winding
direction of a right-handed screw pointing in the positive direction
of the magnetic flux. Then, we have

V=" (4.32)

This is called the law of electromagnetic induction or
Faraday’s Law.

Suppose we move the magnet while keeping the coil stationary.
Then the free electrons in the conducting wire of the coil are
stationary, and the magnetic field does not exert the Lorentz force on
them. Nevertheless, a force acts on the electrons in the wire so as to
make them move along the wire. Hence, we are forced to consider that
there is an electric field in the wire. This field is called the induced
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electric field. The induced electric field can be generated without
a coil whenever the magnetic flux through a closed loop changes.

The Lorentz force and induced electromotive force

There is a phenomenon similar to the law of electromagnetic
induction: it is the emf induced in a moving conducting wire in a
magnetic field. This emf can be explained by the Lorentz force acting
on the moving charge.

As shown in Fig. 4.30, in a reference frame, S, a conductor rod,
CD, moves at a velocity, v, in a magnetic field, B. Here, the rod, the
velocity and the magnetic field are perpendicular to one another. We
assume there are freely moving positive charges in the rod. When
a positive charge, ¢, is moving at the same velocity v as the rod
(perpendicularly to the magnetic field), the magnetic field exerts the
Lorentz force of magnitude quB on ¢ in the direction of D—C along
the rod. Then, positive and negative charges continue to accumulate
at end C and end D, respectively. As a result, an electrostatic field,
E, is created in the direction of C—D within the rod. After a certain
time, the Lorentz force on the charges balances with the force exerted
by the electrostatic field and the charges finally become stationary.
Using the balance of forces, we have, F/, the magnitude of the electric
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field as
quB=qF = FE=vuB (4.33)

Let the length of the conductor rod be [. The potential at end C
is higher than that at end D, and the potential difference, V, is

V = El =Bl (4.34)

In this way, an induced emf (which gives rise to the potential
difference in Eq. (4.34)) is caused by the Lorentz force in the
conductor rod. As the area swept by the conductor rod in a unit
time is vl, the magnitude of the induced emf is equal to the
magnetic flux that the conductor rod crosses in a unit time,
ie., V=vBl

In comparison, in the reference frame that moves with the
conductor rod, S, the positive charges in the rod remain at rest,
and therefore, the magnetic field does not exert the Lorentz force on
the charges, as shown in Fig. 4.31. Nevertheless, the force directed
from D to C acts on the positive charge ¢. So, there must be an
electric field induced in the direction D—C in the reference frame S'.
Since the magnitude of this force is equal to that of the Lorentz force

frame S’
4+
14°
X B ® B
qE’ E’
q

® B QB
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Fig. 4.32.

on ¢, the magnitude of the induced electric field, E’, is given by
qF'=quB = FE =vB.

The magnitude of the induced electric field, E’, is equal to the
electrostatic field, F, given by Eq. (4.33), but is opposite in direction.

As shown in Fig. 4.32, consider a motion of a square coil, PQRS,
with sides each of length [. Suppose a uniform magnetic field directed
out of the plane of the page is applied to the region on the left side
of the line AB. The magnitude of the field is B. The magnetic field is
not applied to the region on the right side of the line AB. Now, the
coil starts moving rightward at a constant speed, v, then the Lorentz
force of magnitude f = quB acts on a positive charge of ¢ on the side
QR in the direction Q—R. Hence, an emf is induced in the direction
P—Q—R—S—P in the coil.

Example 4.11. Suppose at time t = 0, we put the side PS of the
coil in Fig. 4.32 on the line AB. Let the magnetic flux through the
coil at time t(0 < t < [/v) be ®(¢). Show that the emf induced in the
direction P—Q—R—S—P in the coil is

_dad®

=_——. 4.
Vv 7 (4.35)
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Solution

Since the side QR of the coil crosses the magnetic flux at a rate of
vBI per unit time at time t(0<t<l/v), the flux through the coil is
reduced at a rate of —%> = v Bl per unit time. Here, the magnitude of
the emf, V = vBI, is 1nduced on the side QR in the direction Q—R.
In contrast, emf is not induced on both of the sides PQ and RS,
because they do not cross the magnetic flux. Thus, in the coil, an emf
of V.= —% = vBl is induced in the direction of P—Q—R—S—P.
This relat10n holds for any coils, including square coils. |

Self-induction

When a current, I, in a coil varies with time, an emf is induced so as
to counteract the change in the current. This emf can be expressed
as

dI
= 1. 4.
V=-L% (4.36)

The emf given by Eq. (4.36) is called the self-induced emf.
In Eq. (4.36), the coefficient L represents the magnitude of self-
induction, and is called the self-inductance.

As shown in Fig. 4.33, when an external flux, ®, through a coil

of a self-inductance L and of a resistance R varies with time, from
Eq.(4.32) and Eq. (4.36), Kirchhoff’s loop rule applied to the coil

ik

Fig. 4.33.
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circuit is
do dl

—— — L= =RI. (4.37)

A time-dependent current is induced in the circuit, following
Eq. (4.37). This equation is called the circuit equation. Here, the
current has a sign. When the current [ is positive, the coil carries the
current in the rotational direction of a right-handed screw advancing
toward the direction of the magnetic flux ®, and when it is negative,
the coil carries the current in the opposite direction.

Advanced Problems

Problem 4.4. The law of Bio and Savart

The battery that Volta invented in 1800 contributed a great deal
to the advances of modern science. It gave scientists the gift of
electric current. Twenty years later, Oersted of the University of
Copenhagen, discovered that a current exerts force on a compass
needle, and he reported this in a small article in June 1820. His
discovery initiated a progress toward the unified concept of electricity
and magnetism. In September of the same year, Arago reported
Oersted’s findings at a conference of the Institute of France. One
week later, Ampere announced that he had found that two currents
flowing in the same direction in two straight parallel wires attract
each other, and that those flowing in the opposite directions repel
each other. Seven weeks later, at the end of October of the same
year, Biot and Savart announced their discovery of a law of the force
that a linear electric current exerts on magnetic poles.

Figure 4.34 shows an overview of Biot and Savart’s experiment.
Electric current I is flowing along a long straight conducting wire
in a direction, perpendicular to the paper. AB is a compass needle
placed parallel to the paper. The needle is supported at its center
P, around which it can rotate. The mass of the compass needle is
m and its length is 2[. Hereafter, we refer to “this needle” as “the
compass needle”. A magnet is placed close by in order to cancel the
geomagnetic influence. Biot and Savart presumed the following.
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Fig. 4.34.

“The force exerted on a magnetic pole at point P is perpendicular
to the conducting wire, and points in a direction tangential to a circle
whose center is at the conducting wire. The strength of this force
is proportional to the magnitude of current I and depends on the
distance r between the linear current and the magnetic pole.”

Let us express the force by F(r) to indicate explicitly that it
depends on r. When the compass needle tilts a little, as shown
in Fig. 4.34, the distances between the current and the two ends,
A, B, of the compass needle are ry = 72412+ 2risinf and
rg = V12 + 12— 2rlsinf, respectively. If [ is substantially smaller
than r, these distances can be approximated by ra = r and rg = r.

We set the compass needle such that the force exerted on point
A is F(r), and that on point B is —F(r), both forces being in a
direction tangential to the circle with its center at the conducting
wire (Fig. 4.34).

Before applying an electric current, we tilt the compass needle
by a small angle, 6, from the direction tangential to a circle whose
center is at the conducting wire. When a current I flows through the
wire, the compass needle vibrates around point P like a pendulum.
Let us find how its vibration period ¢ depends on m,l and F(r).

(1) Let the period ¢ be written as t = hm@®°[F(r)]. Determine a,b
and ¢ by a dimensional analysis to complete this equation for ¢,
where h is a dimensionless constant.

(A physical quantity has fundamental dimensions, such as
mass [M], length [L], and time [T], or combinations of these
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fundamental dimensions, such as velocity [LT~!], acceleration
[LT~2], etc. Consideration of dimensions helps us determine the
relation between physical quantities. For example, let us take a
pendulum with a small mass m suspended by a string of length [.
This system involves only three physical quantities: m, [ and the
gravitational acceleration g, whose dimensions are [L], [M], and
[LT~2], respectively. Since the dimension of the period is [T], the

period can be assumed to be proportional to \/g . This gives the

period = s\/g , where s is a constant. This type of analysis is

called the dimensional analysis.)

Let t1 be the vibration period of the compass needle when the

magnitude of the electric current is I, and let to be the period

when the current magnitude is 2/. Assuming that the values

other than the current are the same in both cases, find the time
to

ratio ol
1

Biot and Savart varied the distance r between the linear current

and the compass needle to measure the time interval of ten vibration
periods for each r value. Table 4.1 shows their data.

(3)

Assume F(r) = ar™, where a is a constant. Which value of n,
out of n = 1,0, —1 and —2, makes this equation fit best to the
data in Table 4.17

This experiment showed how the force exerted on a compass

needle at distance r from a linear electric current I depends on r, and
that the force works in a direction tangential to a circle whose center

Table 4.1. Biot and Savart’s experimental data.

Time interval of ten

r (mm) periods observed (sec)
15 30.00
20 33.50
40 48.85
50 54.75
60 56.75

120 89.00




160 Physics Olympiad: Basic to Advanced Exercises

is at the linear current. However, this experiment was not sufficiently
accurate. Biot presumed, from calculus theory, that the conducting
wire consisted of tiny elements and that the sum of the forces that
each element exerted on the compass needle represented the force
exerted by the whole wire. Based on a physical and mathematical
consideration, he obtained the following equation:

flr)= k%(— cos a + cos 3), (4.38)

where f(r) is the magnitude of the force that the wire element CD,
in Fig. 4.35, exerts on the magnetic pole at point P (k is a constant).

Fig. 4.35.

(4) Using Eq. (4.38), express F(r) in terms of k, I and r. Here F(r)
is the magnitude of the force exerted on the magnetic pole in
Fig. 4.34.

(5) Let Fyi(r) be the force that the half straight line below point M
in Fig. 4.36 exerts on a magnetic pole at point P. Express Fy;(r)
in terms of k, I,r and 0, using Eq. (4.38).

l— 1 P
>9/_~
M

A

Fig. 4.36.
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In order to confirm the correctness of Eq. (4.38), Biot came up
with the ingenious idea of using a V-shaped current (see Fig. 4.37)
instead of a linear one. He noticed that the force a V-shaped current
exerts on a magnetic pole is equivalent to the force that a linear
current, a part of which is missing, exerts on the same magnetic pole.
Although a linear current, a part of which is missing, does not exist
practically, its theoretical equivalent is given by a V-shaped current.

Fig. 4.37.

(6) Let F'(r) be the force that the V-shaped current in Fig. 4.37
exerts on a magnetic pole at point P. Express F'(r) in terms of
a,i,r and k.

(7) Let t be the vibration period when the compass needle vibrates
around point P in Fig. 4.34, and let ¢’ be the vibration period
when the needle vibrates around point P in Fig. 4.37. Express
the ratio ti, in terms of parameters which are necessary in «, ¢, r, [
and k.

Biot measured the vibration periods for various magnitudes of
current, various distances between the magnetic pole and the current,
and various angles of the V-shaped conducting wire, and showed that
his theory is correct by comparing the ratios of these periods with
his theoretical values.

In the 1820s, charged particles had not yet been discovered, nor
had it been discovered that a current is a flow of charged particles.
Because scientists had not yet arrived at the concept of magnetic field
at that time, to Biot and other scientists of that era, his result was
simply a law of the force that a current exerts on a magnetic pole,
and not a law of the magnetic field generated by an electric current.
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It was at the end of the 19th century that scientists established the
principle of action through medium, which states that a current is
a flow of charged particles and that a current forms around itself a
magnetic field which affects magnetic poles and currents. Eventually,
the Biot-Savart law came to be understood as, in fact, a law of the
magnetic field generated by an electric current.

(the 2nd Challenge)

Solution

(1)

Given mass, length, and force, solve for time. Then, you need to
know the dimension of force.

] = [T] = (o] P][Fe] = [M[LY[(MLT 2] gives a + ¢ = 0,
b+ c=0, and —2c = 1. Solving these equations, we obtain

The period is given by

ml
t=nh .
\ F(r)
From the result of part (1), we know that F(r) is in the

denominator in the expression for the period. Since F(r) is
proportional to the current, we have

20

Use F(r) = ar™ in the result of part (1). The exponent n cannot
be positive, since the period increases as r increases.

If we let n=—1, then t=s./r (s is a constant). Substitution
of the values, =15 and t=30, into this equation gives
s="7.746. Then, for s=7.746 and r=20,40,50,60,120 we



(7)
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obtain t=34.64,48.99,54.77,60.00,84.85, respectively. These
values agree favorably well with the experimental data. If
n=—2, then t = sr. Therefore, substitution of r=15 and ¢t =30
gives s=2. Then for s=2 and r=20,40,50,60,120 we get
t =40, 80, 100, 120, 240, respectively. These values do not fit the
experimental data.

It is easy to see that ¢ goes farther away from the experimental
data for n = —3, n = —4, etc. Therefore, the answer is n = —1.
Applying @« — 7 and 8 — 0 to Eq. (4.38), we obtain

_u
L)

F(r)

Applying @« — 0 and § — 0 to Eq. (4.38), we obtain

Fy(r) = ]{;—I(l —cosf).

Subtracting the force that would have been produced by the
missing part of the linear current from the force exerted by the
entire linear current, we obtain the required value. Note that
the distance between the imaginary linear current and point P
is rsin «, which gives

2ki ki(— cos(m — ) + cos «

F'('r’):rs, - -
ina rsina
2ki 2ki
S (1—cosa):—ltang.
rsina T 2

Using the results of parts (4) and (6), we obtain

t —ml/ [ «
2kI /7 1
F = S = Ytan E -

(2ki/7) tan(a/2)
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Problem 4.5. The propagation of electromagnetic waves

Visible light, radio wave, X-ray, etc. belong to electromagnetic waves,
which consist of waves of electric and magnetic fields, and propagate
in vacuum at a constant speed ¢ ~ 3.0 x 105m/s. The existence of
the electromagnetic waves is theoretically predicted by J. C. Maxwell
in the middle of the 19th century. Here, we will discuss Maxwell’s
equations.

Imagine a Cartesian coordinate system and choose the z-axis in
the direction where an electromagnetic wave propagates. Then, the
electric field F and the magnetic field B are perpendicular to each
other, and are parallel to the y-axis and the z-axis, respectively (see
Fig. 4.38). In the plane parallel to y—z plane, both E and B are
uniform and depend on position z and time t.

I The law of electromagnetic induction in a small area

We take a small rectangular loop abed of a small width Ax and a
small height h in the x—y plane that contains point P(z,,0,0), as
shown in Fig. 4.39. Let the electric field at a point (z,0,0) be E
and that at a point (z + Az,0,0) be £+ AFE. And further, suppose
the magnitude of the magnetic field B through abcd is uniform and
that the magnetic field B changes to B + AB during a small time
interval At.

Yy
A
E
Propagating
direction
—_—
» X
0 P

Fig. 4.38.
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Fig. 4.39.

(1) Considering abcd a rectangular coil of a single turn, we apply the
law of electromagnetic induction to this coil. Derive the following

relation
AE AB
- __== 4.
Az At (4.39)

IT Maxwell-Ampere’s law

In the following sentence, enter appropriate equations in the boxes
of [(2)|and |(3) |

Let a current ¢ flow in a circuit with a capacitor of two parallel
circular plates of area S as shown in Fig. 4.40. Any real current
does not flow between the two plates of the capacitor, but Maxwell
considered that a magnetic field B is generated around the capacitor
as well as around the conductor wire of the circuit. Following this
consideration, he supposed something equivalent to the current ¢
flows between the plates. Assume that the area of the plates is
sufficiently large and the space between the plates is very narrow.
Then a uniform electric field perpendicular to the plates is produced
between them.
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Now, let the vacuum permittivity be g and charges stored on the
two plates be Q and —(Q. Then an electric field E produced between
the plates of the capacitor is given by |(2) | Since the current i is
the charge flowing into the capacitor per unit time, it is expressed in

terms of the time derivative of the electric field, %, as

i=[(3)]. (4.40)

Any real current does not flow between the plates, but the electric
field between the plates varies with time. Maxwell considered that
the electric field varying with time accompanies a magnetic field
and called the physical quantity expressed by the right-hand side
of Eq. (4.40) the displacement current.

Replacing the real current ¢ by the displacement current ip in
Ampere’s law, we have the following relation:

%Bdl = ;LoiD = Mo X (3) s (4.41)

where p is the vacuum permeability. Equation (4.40) shows that
when an electric field is varying with time, a magnetic field is induced.
This is called Maxwell-Ampere’s law.

ITT Maxwell-Ampere’s law in small region

Let the magnetic field at the point x be B and that at the point x+Ax
be B+ AB. As shown in Fig. 4.41, we take a small rectangular loop
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Propagating
direction

Fig. 4.41.

pars with a small width Az and a small depth h in the z—x plane
that contains point P. Assume that the electric field through pqrs is

spatially uniform, but depends on time and varies from F to £+ AFE
during a small time interval At.

(4) By applying Maxwell-Ampere’s law, derive the following relation:

AB AFE
S 4.42
Az Somo (4.42)

Since both E and B are functions of z and ¢, using partial
derivatives with respect to z and t, we replace 22 and &2 in

) Az ] At
Eq. (4.39) and AA—];J and i—f in Eq. (4.42) by %—f, %—lf, %—f and %—f,

respectively. Then we have

oF 0B 0B OF
r i mi L T (4.43)
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|

IV The propagation speed of an electromagnetic wave

We will derive the propagation speed c¢ of an electromagnetic wave.
As shown in Fig. 4.42, we assume that the electric field F and the
magnetic field B are given as functions of x and ¢ in the form of a
progressive wave as follows:

x t
FE = Eysin?2 - — = 4.44
0 sin 77()\ T>’ ( )

x t
B = Bpsin2 —— = . 4.45
0 sin 7T<)\ T) (4.45)

Here, A and T are, respectively, the wavelength and the period of £
and B, and Ey and By are the amplitudes of ¥ and B, respectively.
We further note that both E and B are oscillating mutually in phase.

(5) Using Eq. (4.43), find the relation between the electric field E and
the magnetic field B given by Eqs. (4.44) and (4.45), respectively.
Further, show that the propagation speed of the electromagnetic
wave is given by

1

Veors

Substitution of the values of gy and po into Eq. (4.46) yields
c ~ 3.0 x 1085m/s. We see that the visible light is a kind of

(4.46)

CcC =
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electromagnetic wave, because the value of ¢ coincides with the
observed speed of light in vacuum.

(the 2nd Challenge)

Solution

(1)

When the magnetic flux changes from ® to ®+A® during a small
time interval At, the law of electromagnetic induction gives the
emf V induced per a single turn as

A
=——. 4.4
Vv At (4.47)
Since the area of the coil is S = hAz, the magnetic flux
through the coil is ® = BhAx, and so, we obtain
Ad AB

Let a unit charge go around the rectangular coil along
c—d—a—b—c. The work done by the electric field is equal to
the induced emf V. The works along the paths c—d, d—a, a—b
and b—c are We_q = (E+ AE)h, Wy_, = 0, Wo, = —Eh
and Wy,_,. = 0, respectively, and so, summing them up we have

V= WC—>d + Wd—>a + Wa—>b + Wb—>c
— (E+ AE)h — Eh = hAE. (4.49)

From Eq. (4.47) through (4.49), we obtain Eq. (4.39).
Since the charge per unit area of the plate of the capacitor is %,
the electric field E between the plates is

Q
E=—. 4.50
5 (4.50)
From Eq. (4.50), we can write a relation AE = ﬁ)—g. On the other
hand, since the current is the charge flowing through the cross
section of the conductor wire per unit time, we have
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Let us apply Maxwell-Ampere’s law to the rectangular loop pqrs.
The line integration of B along the loop q—p—s—r—q yields

f{de = Bh— (B+ AB)h = —hAB.

Since the area of the rectangle pqrs is S = hAz, Eq. (4.41)
then becomes

AFE
—hAB = hAz——.
Hogo AT Al

The propagation speed c¢ of the electromagnetic wave is the
velocity of the point where the phase of the wave is constant.
Hence, letting ¥ — % be a constant ¢y in Egs. (4.44) and (4.45)
and differentiating both sides of the equation, § — % = ¢,
with respect to t, we have the propagation speed c¢ of the

electromagnetic wave as

lde 1 dr X

St = =2, 4.51

at T ) TT e T (4.51)
Equation (4.51) is known as the fundamental equation of the
wave.

From Egs. (4.44) and (4.45), we get

E 2
8_ = —ﬂ-E()COS27T <E— i),

Ox A AT
0B 2m z
e —?BQCOSQTF <X — T)

Substituting these results to the first equation of Eq. (4.43),
and using Eq. (4.51), we have

A
EO = TBQ = CBo.

Substitution of this equation into Eq. (4.44) gives the relation
between the electric field and magnetic field as

E = cB. (4.52)

Further, substituting Eqgs. (4.44) and (4.45) into the second
equation of Eq. (4.43), and using Eq. (4.51), we have, in the
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same way as the above,

A
B = TgOMOE = C€0,U,QE. (453)

Elimination of B from Eqs. (4.52) and (4.53) yields
E = eopok,
from which Eq. (4.46) is derived. [ |

Problem 4.6. The motion of charged particles
in a magnetic field

Dilute gases spreading in the region of the magnetosphere located
above the ionosphere of the earth and in the interplanetary region of
the solar system are, in many cases, in the state of plasmas (ionized
gases) which consist of electrons and protons. These plasmas are
moving under strong effects of magnetic and electric fields. Here, by
considering motions of charged particles in the presence of magnetic
and electric fields, we study the basis of the motion of the plasma.
I We consider the motion of a particle of charge ¢ and mass m in a
uniform electric field E = (E,0,0) directed along the x-axis and a
uniform magnetic field B = (0,0, B) directed along the z-axis. Let
the position of the particle be (z,y, ) and its velocity be (V,,,V,, V),
then we have the following set of equations:

dV,
=q(F + BV,
m dt q( + y)a

dv,
s
av,

—0.
L

Such equations are called the equations of motion; each left-hand
side represents the acceleration times the mass of the particle, and
each right-hand side represents the force acting on the particle from
the electric field £ and the magnetic field B. Here we assume that
both E and B are independent of time. From the third equation of
Eq. (4.54), we can easily see that in the z-direction the particle moves
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at a constant speed, so, in Sec. I, we will confine our considerations
to the particle motion in the plane perpendicular to the z-axis.
At first, we set ' = 0, then, from Eq. (4.54), we have

m dVy
dt

dv,
= qBV,, md—ty = —qBV,. (4.55)

(1) From Eq. (4.55), derive the following relations:

d*V, d*Vv,
a2 —weVa, e —weVy, (4.56)
where
B
we =12 (4.57)
m

(2) Equation (4.56) shows that the charged particle performs a
simple harmonic oscillation at angular frequency |w.| in both
of the z and y directions. |w.| is called the cyclotron angular
frequency. Letting V;, = 0 and V,, = V| > 0 at ¢t = 0, show
that V, and V, at time ¢ are, respectively, given by

Va(t) = Visinwet, Vy(t) =V coswet

(3) Derive the position (x(t),y(t)) of the charged particle which
was located at (—Z—t, 0) at the initial time ¢ = 0. Further, show
that the particle moves in a circle of radius given by

Vi

_@.

Te (4.58)

This circular motion is called the cyclotron motion, and r,
is called the cyclotron radius. Note that by using the position
coordinate (z,y), the velocity vector is given by

dx dy

t) = — t) = —.

Vi) =S V() =
(4) The magnitude of the geomagnetic field depends on a position
of the surface of the earth. At Tokyo, it is about 3 x 107> T.

Calculate the cyclotron angular frequency of the electron at
Tokyo.
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Calculate the cyclotron radius of the electron when its velocity
is 3.2x 107 m/s (which corresponds to the velocity of an electron
accelerated by the electric voltage of about 3,000 V). Further,
calculate the ratio of this cyclotron radius to the radius of the
earth, 6.4 x 105 m.

The geomagnetic field, when observed in the earth scale
length, depends on the position, but, if we observe it in the scale
length of the cyclotron radius, which is much smaller than the
radius of the earth, we can regard the charged particle motion
as a circular motion in a uniform magnetic field.

Now, we consider the case that F is not zero in Eq. (4.54).
Denoting U, =V, and Uy, =V, + %, show that the equation of
motion (4.54) can be rewritten as

m dUy,
dt

du,
= qBU,, md—ty = —qBU,.

By setting the initial condition as U,(0) = 0, Uy (0) = V| > 0,
derive the expression for V,(t) and V,,(t) in terms of V|, we, E,
B and t.

Using the above results, derive the particle position (x(t),y())
at time ¢ under the initial conditions,z = —Z—t and y = 0 at
t = 0. Draw the outline of the trajectory of its motion in both
cases of ¢ > 0 and g < 0, respectively.

In part (8) the electric field was in the z-direction. Explain how
the orbit looks like when the electric field is in the y-direction.
Draw the outline of the trajectory of its motion in both cases
of ¢ > 0, and ¢ < 0, respectively.

The above results show that in the presence of uniform mag-
netic and electric fields, which are perpendicular to each other,
the motion of a charged particle in the plane perpendicular to
the magnetic field is a superposition of the cyclotron motion
and a uniform velocity motion in the direction perpendicular to
both of the magnetic and electric fields. This motion is called
the E x B drift motion.

The plasma is a dilute ionized gas consisting of equal numbers
of electrons and positive ions, being electrically neutral as a
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whole. Suppose, to a plasma in a magnetic field, we apply an
electric field perpendicular to the magnetic field, then explain
how the motion of the plasma looks like as a whole.

IT We next consider the motion of a charged particle helically winding
around slightly curved magnetic field lines, as shown in Fig. 4.43. We
choose the z-axis in the direction of the movement of the center of
the cyclotron motion of the charged particle. The distribution of
the magnetic field lines is symmetric around the z-axis. When the
magnetic field consists of curved magnetic field lines as shown in
Fig. 4.43, the magnetic field is not uniform along the z-axis. Then,
the charged particle moves with acceleration in the z-direction.

z

7N

e

R 4
[ %
e A
==
e Yy
=
=<
K9
~>
X
Fig. 4.43.

As the charged particle moves in the z-direction, the magnetic
field B at the particle position varies with time, but if its variation
during one period of the cyclotron motion is much smaller than the
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strength of B itself at that position, then, the motion in this field
can approximately be described by a superposition of the cyclotron
motion in the x—y plane and the motion of the rotating center in
the z-direction. Here, the angular frequency of the cyclotron motion
varies with z, being written in terms of the local magnetic field,
B.(Z), at the center of the circular motion as

_ qB:(2) '

we(2)

In the treatment of Sec. I, V. was constant as there was no

(4.59)

force acted in the z-direction. Here, however, it depends on z, so
that we have to consider an accelerated motion in the z-direction.
For this purpose, we use the radius of the cyclotron motion, 7, the
relation (4.58) between the velocity of the circular motion V| > 0
and the cyclotron frequency w. given by Eq. (4.59), and in addition
the following two laws:

(a) Here, as the magnetic field variation is sufficiently slow, the
force acting on the charged particle from the magnetic field
can be regarded as being always directed to the center of the
rotating motion. Then the law that the areal velocity is constant
in rotating motion holds:

rcVy =Cp  (Ch: a constant). (4.60)

(b) As the force exerted by the magnetic field is perpendicular to the
velocity of the charged particle, it does no work on the particle,
so that the kinetic energy of the particle is constant, from which
we have the following relation:

1
§m(Vz2 + V) =Cy (Cy: aconstant). (4.61)

(11) Derive the expressions for C and Cs in Egs. (4.60) and (4.61),
respectively, in terms of V| (0), V>(0), B.(0), ¢ and m.

(12) Show that, when B, varies with the movement of the center
of the rotating motion in the z-direction, imV, (z)? varies
proportionally to B,(z).
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(13) We introduce a function of z:

mV(0)2B.(2)

Ve =350

Derive the following relation for the motion of the charged
particle in the z-direction:

%mVZ(z)2 FU() = o, (4.62)

If we regard U(z) in Eq. (4.62) as a potential energy at z, we can
see that Eq. (4.62) is the law of the mechanical energy conservation
of the charged particle for one dimensional motion in the z-direction.
This means, when the magnetic field varies, a force acts on the
charged particle in the direction of the magnetic field lines.

Hereafter, the magnetic field B, (z) is assumed to be an increasing
function of |z| having a minimum at z=0, and is symmetric with
respect to z=0. The magnetic field shown in Fig. 4.43 is an example
of such magnetic field configuration.

(14) Suppose there are two plates at z = L, respectively, in the
magnetic field configuration, as shown in Fig. 4.44. We assume
that when the charged particle hits the plate, it is immediately
absorbed and annihilated. We denote the ratio of the maximum
value, B, (L), to the minimum value, B,(0), by M, i.e.,

_ B.(1)
- B.(0)

Derive the condition for V| (0) and V,(0) that the charged
particle should move back and forth between two plates without
hitting the plates, in terms of M.

Now, we consider the charged particle velocity at z=0 in the
three dimensional velocity space, (V;,V,,V.). The result of the
previous part (14) shows that in this three dimensional velocity space
there is a cone-shaped region whose axis is the V,-axis. This cone-
shaped region in the velocity space is called the loss cone, inside
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which all charged particles are lost by hitting the end plates. This
is a characteristic property of the plasma enclosed in a magnetic
configuration, such as the one in the geomagnetic region. Stated
in another way, the charged particles outside the region of the
loss cone in the velocity space are confined near the minimum
point of the magnetic field. This is called the magnetic mirror
effect.

(15) Draw the shape of the loss cone in the velocity space, and derive
the value of sin# in terms of the ratio M, where apex angle of
the cone is 26.

A group of charged particles (geomagnetic plasma) confined by
the magnetic mirror effect of the geomagnetic field are, sometimes,
exposed to and shaken by the plasma wind ejected from the sun.
Then, some charged particles escape from the magnetic mirror, and
they storm into the ionosphere near the South and North Poles,
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where magnetic field lines of the geomagnetic region descend. As a
result, it is well known that auroras occur.

Notes: Electron mass: m = 9.1 x 1073 kg

Elementary electric charge: e = 1.6 x 10719 C
(the 2nd Challenge)

Solution

(1)

By differentiating the first equation of Eq. (4.55) and using its
second equation to the right hand side, we have

d*V, av, ¢>B?

—t=g¢B—tL=—21"1V,.

ar T g m "

Similarly, differentiation of the second equation of Eq. (4.55)
yields

d?V,, dvy, q>B?

mgp = B =

By using we = %, we obtain Eq. (4.56).

For the first equation of Eq. (4.56), d;t‘g”” = —w?V,, we have the
following general solution:

Vo (t) = asinwct 4+ bcoswct, where a and b are constants.

From the initial condition that V, = 0 at t = 0, we have
b = 0. Then, from the equation of motion, we obtain
m dVy —m

= = —aWwc COS Wt = a cos wet.
Y ¢B dt qB ¢ ¢ ¢

From V, = V| at t = 0, we have a = V. Finally, we obtain
Ve =V sinwct, and V, = V| coswet.
From V, = ‘é—f = V| sinw.t, we have x = zg — Z—t cos w¢t, where
o is an integral constant. By the initial condition that x =
—Z—t at ¢ = 0, we have z¢p = 0, from which we obtain x(f) =
Vi

oo coswet. Similarly, from V, = i—y

¢ = Vicoswct, we have

Yy = yo + “:—t sinw.t, where g is an integral constant. By the
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initial condition that y = 0 at ¢ = 0, we have yy = 0, from
which we obtain y(t) = Z—t sin wet.

From these results, we have a relation, 2> +y? = (Z—t)Q, which
implies that the particle moves on a circle of radius LA

[wel
From Eq. (4.57),

/B 1.6x1072Cx3x10°T

= 5.3 x 10°rad/s.
01 % 10 kg 5.3 x 10°rad/s

By using the values of V| = 3.2 x 10"m/s, and |w.| = 5.3 x
10% rad/s, we get

Vi 3.2 x 10" m/s 6.0
Te = = ————— = 0.UIn.
“ wel 5.3 x 108rad/s

The ratio of the cyclotron radius to the radius of the earth,
R =6.4x10%m, is
Te 6.0m 7
—=———"—=94x10"".
R~ 64x100m 20
We substitute V, = U, and V,, = U, — % into the first and
the second equations of Eq. (4.54). Since E + BV, = BU, and

%z%,wehave
du. du,
T —¢B —Y = —¢BU,.
mdt qBU,, mdt qBU,

By using part (2) and the initial conditions, we have
Ug(t) = Visinwet, Uy(t) = V| coswct.
So, we obtain the following relations

Vi (t) = Uy(t) = Vo sinwet,

E E
Vy(t) =Uy(t) — 3= V| coswet — 7L
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(8) Integrating the results of the previous part (7) with respect to

t, we have

Vi .
x =1x9— —coswct (xo: an integral constant)
C

Vi E :
y=1yo+ —sinw.t — =t (yo: an integral constant).

We B
Sincex:—x—t and y =0 at t = 0, we have zg = 0, yo = 0.
Then, we have
V V
== coswet, Y= L sin wet — —t.
We We B

The outline of the trajectory of the cyclotron motion:
The sign of w, = % coincides with that of q. When w, < 0, it
is easier that we show the outline, if we represent z and y in
the following form:

T = K}—j cos welt, y= |cvu—t| sin |we|t — Et.
In a case of V| > %, the direction of rotation of the cyclotron
motion is clockwise when ¢ > 0 (w. > 0), and counterclockwise
when ¢ < 0, (w. < 0), respectively. In either case the center
of the rotation moves straight to the —y-direction at a uniform
velocity. In a case of V| < %, the y-component of velocity is
always negative and the particle does not rotate. Outlines of
the trajectories are shown in Fig. 4.45.
When the electric field E is in the y-direction, from symmetry
consideration outlines of the trajectories can be obtained by
rotating the trajectories of part (8) by 90° counterclockwise
around the z-axis. Namely, the direction of rotation of the
cyclotron motion is the same as the case of F in the z-direction,
and the motion of the center of rotation is a straight motion with
uniform velocity in the z-direction for both cases of positive and
negative charge. Outlines of the trajectories for the case V| > %
are shown in Fig. 4.46 (the case of V| < % can, of course, be
drawn in a similar way).
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Fig. 4.45.

Yy Y
q>0 E qg<O0 E

Fig. 4.46.

(10) By the results of part (7), we can see that the direction of the
FE x B drift, that is, the moving direction of the rotating center
of the cyclotron motion, is the progressive direction of the right-
handed screw from the E-direction to the B-direction. Further,
the velocity of this drift is independent of the charge and the
mass of the particle. Thus, we can say that a plasma consisting
of electrons and positive ions moves as a whole to the direction
of the E x B drift keeping its shape.
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(11) From Egs. (4.60) and (4.61), we have

VJ_ m 2 m 2
Cr=rV, =2V, =" vy2—_ " vy (0?2 (463
r=reVe = oV = B T im0 (463)
1 1
Cs = 5m(vf + VY = 5m(vz(())2 + VL(0)2).

(12) From Eq. (4.63), we have

lmVJ_(Z)Z _ mVy (0)2

2 2B.(0)
(13) The result of (12) can be written as $mV, (2)> = U(2), so,
Eq. (4.61) becomes
1
§sz(z)2 +U(z) = Cs.
(14) From parts (11) through (13), we have

1 2 1 2B:(2) 1 2 1 2
2sz(z) + szL(O) B.0) 2mVZ(O) + 2mVL(O) .

We therefore obtain the relation

2 B:(2)
B.(0)

V.(2)? = V,(0)% + V1 (0)2 = V. (0)

In order that the charged particle turns its direction before
hitting the plate, V,(z) should become zero in the region |z| <
L. This requires the following relations:

2 B:(L)

V(02 4+ VL (0)2 < V(0 =V, (0)2M,
(0)" +V.(0) l()BZ(O) 1(0)
from which we finally get the following condition:
V2(0) ’
M—1
Vi(0)

(15) In the velocity space at z =0, the region satisfying the inequality

of the result of part (14), i.e., |“/{j((%))\ < VM —1, is the space

outside the cone shown in Fig. 4.47.
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Vz

Fig. 4.47.

As the apex angle of the loss cone is 20, we have
1
VM -1

tan f =
Namely,

1 1

M=14— =
+tar129 sin?6’

sinf =

=



This page intentionally left blank



Chapter 5

Thermodynamics

Elementary Course
5.1. Heat and Temperature

When two systems are kept in thermal contact with each other for
a sufficiently long time, they become a state of thermal balance and
their states no longer change afterwards. Such a state is called a
thermal equilibrium state where the temperatures of both
systems are equal to each other. A physical quantity that assumes
a definite value in a thermal equilibrium state is called a quantity
of state. For example, the temperature, pressure, and volume of the
gas are quantities of state.

5.1.1. Empirical Temperature

The temperature used in ordinary life is defined as follows.

When ice and water coexist in thermal equilibrium under atmo-
spheric pressure, the temperature is set to be 0°C. When water and
steam coexist, the temperature is set to be 100°C. Hence, by dividing
the interval between the above two temperatures into one hundred
equal parts, we define the temperature of each part as 1°C.

The ideal gas is used as a standard in dividing the interval into
one hundred equal parts. The temperature defined in this way is
called the empirical temperature.

5.1.2. One Mole and Avogadro’s Number

One mole is defined by the amount of matter, which consists of
the same number of particles as the number of atoms contained
in 0.012 kilogram of carbon (mass number: 12). The number of

185
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atoms (molecules) contained in 1mol of the substance is called
“Avogadro’s number”. It is given by the following number:

N = 6.02 x 10%* 1/mol (5.1)

5.1.3. Equation of State for Ideal Gas

A gas is called an ideal gas when the constituent molecules are so
far away from one another that interactions among molecules are
negligible except for their collisions. The air under the atmospheric
pressure can be regarded as an ideal gas because its density is small
or the gas is dilute. In the ideal gas, the product of the pressure, p,
and volume, V', is kept constant under a fixed temperature. This is
called Boyle’s law. It is established by experiments. The product
pV is proportional to the molar number, n, of the gas molecules.
Hence, the absolute temperature, T, is defined by a quantity
that is proportional to pV of one mole ideal gas, and its coefficient
is called the gas constant, being denoted by R. Thus, the following
relation holds:

pV =nRT. (5.2)

Equation (5.2) is the equation of state for an ideal gas we
call the ideal gas equation. The unit of the absolute temperature is
represented by K and its unit is defined by the relation, 1 K=1°C.
Using an ideal gas, 0°C is experimentally found to be 273.15 K. It is
known that there is no essential difference between the absolute tem-
perature defined empirically in this way and the thermodynamic
temperature defined strictly by thermodynamics.

5.1.4. Quantity of Heat and Heat Capacity

Atoms and molecules are moving randomly even inside static
matters. The higher the temperature is, the more rapid the motion
of the particles is. This random motion of the particles is called
the thermal motion. Change of the temperature of matter is due
to a transfer of energy of thermal motion. This energy of thermal
motion is called the quantity of heat. It is measured by the unit
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of work, J (Joule), because it is a kind of energy. The quantity of
heat necessary for raising the temperature of water 1g by 1°C is
defined as 1cal, and it is known that 1cal=4.2J. Heat capacity is
defined by the quantity of heat needed to raise the temperature of
matter by 1 K. Specific heat is the quantity of heat needed to raise
the temperature of matter of 1kg by 1 K. Therefore, the quantity of
heat, ), which is needed for raising the temperature of matter with
mass m and specific heat ¢ by t is given by

Q = mct. (5.3)

Elementary Problems

Problem 5.1. Properties of temperature

Read the following sentences (1)~(7) and check whether they are
correct (Yes) or incorrect (No).

(1) When a ball made of copper (80°C) is soaked into the water
(20°C) of the same mass as the ball contained in a heat insu-
lating vessel, the water temperature becomes 50°C in thermal
equilibrium.

(2) The wet bulb of a psychrometer indicates a temperature lower
than that of the dry bulb, because the water evaporates from the
surface of the wet bulb.

(3) Pumping air into a tire of a bicycle heats the cylinder of the
bicycle pump. The reason is mainly not due to friction but due
to adiabatic compression of the air in the cylinder.

(4) When an ideal gas of a given amount confined in a container is
heated by keeping its volume constant, all the heat added is used
to increase the internal energy.

(5) Heat quantity needed to raise the temperature of ideal gas of a
given amount by 1°C is smaller under a constant pressure than
under a constant volume.

(6) The absolute temperature of a gas is proportional to the average
speed of the gas molecules.
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(7) The pressure of the ideal gas in a container of constant volume is
proportional to the average kinetic energy of the gas molecules.
(the 1st Challenge)

Answer (1) No (2) Yes (3) Yes (4) Yes (5) No (6) No (7) Yes
Solution

(1) When a matter absorbs heat, its temperature rises. Between the
quantity of heat absorbed, @), and the rise of temperature, AT,
the relation @ = C'AT holds (C'is the heat capacity). It is known
empirically that the larger the quantity of the matter is, the
greater the heat capacity is. For example, the more the amount
of water is, the longer the time needed for boiling is. The specific
heat depends on the kind of matter. The system reaches thermal
equilibrium at less than 50°C because the specific heat of copper
is less than a half that of water.

(2) A psychrometer consists of two thermometers of the same type.
The bulb of one of the thermometers is wrapped by wet cloth.
Water evaporates from its surface when the humidity is low
and as a result the temperature of the thermometer with wet
cloth decreases. The humidity can be measured by comparing the
temperatures indicated in the two thermometers. When, not only
water, but any kind of liquid changes into gas, heat is deprived.
It is called the heat of vaporization.

(3) When a gas is compressed without heat conduction, the temper-
ature rises. The reason is that the work done for compressing
the gas increases its internal kinetic energy. In contrast, the
temperature falls with adiabatic expansion.

(4) Let @ be the absorbed heat and W be the work done on outer
surroundings, then the increase of the internal energy AU is given
by AU = Q— W according to the first law of thermodynamics. If
the volume of the gas is kept constant, the system does no work
on the outer surroundings. Therefore AU is equal to Q.

(5) The internal energy of an ideal gas is determined by the
temperature alone. In any change of state of an ideal gas in
a given amount, the increase of the internal kinetic energy
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needed to raise the temperature by 1°C is identical. When the
pressure is kept constant, the system does work on the outer
surroundings due to the increase of the volume. By the first
law of thermodynamics, Q = AU + W, more heat is needed
under constant pressure as compared with the case of constant
volume to increase the same amount of the internal energy or
the temperature.

(6) In gaseous states, molecules are disconnected from one another
and move at high speeds. Their average kinetic energy is propor-
tional to the absolute temperature. A molecule with mass m

2 so the absolute
temperature is not proportional to the velocity but to the square
of the velocity.

(7) Let p be the pressure, T the absolute temperature, V' the volume
of an ideal gas of n moles, then by denoting the gas constant
with R, we have the relation, pV = nRT. If the volume, V, is
kept constant, the pressure, p, is proportional to the absolute

at velocity v has the kinetic energy, %mv

temperature, T'. From part (6), the pressure, p, is proportional
to the average kinetic energy of the molecules.
(the 1st Challenge)

Problem 5.2. Potential energy and heat

A bag containing copper particles of 1kg is dropped at initial speed
zero from a fixed point P to a rigid floor (the height of P is 1.5m
above the floor). This bag does not bound at all when it drops on
and collides with the floor. By this collision, 70% of the kinetic
energy of the particles within the bag is given to the particles as
heat. How many times should you drop this bag in order to raise the
temperature of particles by 5 K. Choose the most favorable answer.

The acceleration of gravity is 9.8 m/s2. The specific heat of copper
is 0.38 J/(g- K). Since the heat conduction of copper is well, you can
assume that the heat given to the particles is uniformly delivered to
all the particles without delay.
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(a) 90 times (b) 130 times (c) 190 times (d) 1800 times
(the 1st Challenge)

Answer (c)

Solution

A matter with mass m at height h has a potential energy, mgh. This
potential energy changes into the kinetic energy by falling to the
ground. The kinetic energy changes into molecule’s vibration energy
by collisions, which is the thermal energy of molecules.

Let n be the number of collisions. The energy given to molecules
is E=nx1x98x1.5x0.70J. The quantity of heat required for
raising the temperature by 5°C is @ = 0.38 x 1000 x 5J. Equating
FE to @, we obtain n = 185 ~ 190 times [ |

Problem 5.3. Change of the state of an ideal gas

The state of an ideal gas is changed as A — B — C — D — A. The
relation between the pressure, p, and the volume, V', of the gas is
shown in Fig. 5.1.

Among the five graphs shown in Fig. 5.2, which is the graph
corresponding to the above change for the relation between the
volume, V', and the temperature, 77 Choose the most suitable one
from the five options below.

(the 1st Challenge)

Fig. 5.1.
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Fig. 5.2.

Answer @

Solution

The ideal gas equation, pV = nRT, can be regarded as an equation
for the relation among the quantities of p,V and T, where n and R
are constant. If the values of two quantities out of three p,V and T,
are given, the value of the remaining one is uniquely determined by
the ideal gas equation. Keeping this in mind, we can consider that
points on Fig. 5.1 (p — V graph) represent the states of the gas and
a transfer line on the graph represents the change of the state of
the gas.

e A—B: The volume remains constant, hence the pressure, p, is
proportional to the absolute temperature, 7. The increase of p
implies the increase of T" under constant volume V.

e B—C: The pressure, p, remains constant, hence the volume, V', is
proportional to the absolute temperature, 7.
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e C—D: The pressure, p, and the temperature, T', decrease under
constant volume V.

e D—A: The volume, V, is proportional to the absolute temperature,
T, whence V decreases as T' decreases. The state D eventually
returns to the starting point A.
® Line BC and line AD go through the origin and V is
proportional to T
® Line BC and line AD do not go through the origin and V is
not proportional to T

(the 1st Challenge)
|

Problem 5.4. Making water hotter than tea

As in Fig. 5.3, there are two heat insulating containers A and B
and two other containers of high thermal conductivity C and D.
Container A contains tea (80°C, the specific heat is equal to that
of water) of 1L. Container B contains water (20°C) of 1 L. The
containers, C and D, can be put into the containers, A and B, such
that the liquids inside A and B do not overflow. These containers
can be used in the following ways.

(1) All the water in container B is poured into container C, and then
container C is stored in A.

80°C 20°C
EliE
A B C D
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(2) Due to thermal conduction, the temperature of tea in container A
later becomes equal to that of water in container C. Thus the
following relation holds.

the quantity of heat emitted from container A

= the quantity of heat absorbed into container C

Here we ignored the quantity of heat used for the change of
temperature of the container, as well as the heat emission to outer
environment.

Can you make the temperature of water higher than that of tea,
by using only thermal conduction processes with containers A ~D
without mixing water and tea. If you can do it, explain the method.
If you cannot do it, explain why.

Note that the following equation holds:

quantity of heat transferred
= amount of the matter x specific heat x change of temperature
(the 1st Challenge)
Answer We can do it. For example, there is a way below.

(a) Split the water in B half and half into C and D.

(b) Cis stored in A, and then the temperature becomes 60°C. After
that, the water is returned into B.

(¢) D is stored in A and the temperature becomes 47°C. Then, the
water is returned into B.

(d) The water in B becomes 53°C and the tea in A becomes 47°C.

We may also split the tea, instead of water. Moreover, it is not
necessary to split the water strictly half and half.

Advanced Course
5.2. Kinetic Theory of Gases

Kinetic theory of gases is constructed with the aim to understand
the nature of gases based on the microscopic motion of gas molecules.
We treat the ideal gas as having the feature that the size of gas
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molecules can be neglected and there are no forces acting on them
except for collisions among themselves. We treat the collisions,
whether they are among molecules or between molecules and walls,
as elastic collisions. Further no frictions are assumed to act between
walls and molecules.

5.2.1. Gas Pressure

Consider n moles of an ideal gas at absolute temperature 7" contained
in a cubic box with a length of each side, L, as shown in Fig. 5.4.
The mass of a gas molecule is m and the number of gas molecules of
n moles is N. The z-axis is vertical to the surface of the cube, S. The
y- and z-axes are vertical to the x-axis. At a given moment, let the
velocity of one of the gas molecules be v = (v, vy, v,)(v; > 0). This
molecule moves towards the surface S and hits this surface, then the
z-component of its velocity changes from v, to —v,. So, the amount
of impulse on the surface, S, by this collision is

|m(—vy,) — muy| = 2mu,.

Fig. 5.4.

We assume that this molecule makes no collisions with other
molecules, and it moves a distance v, along the z-axis in unit time.
Therefore, the number of collisions of this molecule with the surface S
per unit time is v,/2L. The impulse of this gas molecule on the
surface per unit time can be regarded as an average force on the



Thermodynamics 195

surface by this gas molecule. Hence, this force, (f), can be expressed
as follows:

2

= (omugs )= 748

where (f) and (v2) denote the averages of f and v2, respectively, over
all the molecules.

Now, there are N molecules in this container, so the average force
(F) on the surface by all the molecules inside the container can be
written as follows:

_ Nm(?)

(F)=N- ()= =" (54)
The mean square velocity of a gas molecule, (v?), can be
expressed in terms of the mean square values of the velocity

components (vg vy, v;) as

On the other hand, taking into account the randommness of the
motion of gas molecules, we can assume that the molecules move in
the same way along any of the three axes, z,y and z. Thus we have

(vz) = (vy) = (02) = (V7). (5.5)

The gas pressure on the surface S can be expressed from Egs. (5.4)
and (5.5) as

F Nm/(v? Nm/{v?

where V = L3 is the volume of the cube, or equivalently the volume
of the gas.

Example 5.1. Evaluate the average kinetic energy of a gas molecule,
by using the ideal gas equation (absolute temperature T'). Use
the Boltzmann constant kg = R/Na (R: the gas constant; Na:
Avogadro’s number)
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Solution

Substituting Eq. (5.6) into Eq. (5.2) (the ideal gas equation), we get

1

gNm@)Z) =nRT.
Then the average kinetic energy of a gas molecule at temperature

T can be expressed in terms of the Boltzmann constant.

3nR 3

2

— =—-—1T= —k T, .

Smo?) = S50T = Sy (57)

where N = nlN, is the total number of molecules, and n is the molar

number of the gas. [ |

Example 5.2. Evaluate the root mean square velocity, \/(v2), of
a molecule of the air at temperature T" = 300 K. Although the air
mainly consists of oxygen and nitrogen, for simplicity, you can here
assume that the air consists of a single species of gas and that its
mass per mole is 30 g. The gas constant is R = 8.3 J/K.

Solution

From Eq. (5.7), we have

3k T 3RT 3 x 8.3 x 300
V(v \/ b = \/ . . = 5.0 x 10 m/s.

Nam 30 x 10—3

5.2.2. Internal Energy

Except for the kinetic and potential energies of the matter as a
whole, the energy due to the internal motion and displacement of the
molecules constituting the matter is called the internal energy of
the matter.

The internal energy of an ideal gas consisting of monatomic
molecules contains only the energy of the translational motion of each
molecule. If the molecule of an ideal gas consists of plural atoms, the
internal energy contains not only the energy of translational motion
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but also the energy of rotation and oscillation around the center of
mass of the molecule.

An ideal gas of n moles consisting of monatomic molecules (the
absolute temperature T') has the internal energy U expressed from
(5.7) as follows:

3 3

where we used the relation, N = nNj.

5.3. The First Law of Thermodynamics

The first law of thermodynamics is the most important law in
thermodynamics. It is another expression of energy conservation law
where we treat heat as energy.

5.3.1. Quasi-Static Process

The process in which the change of the system is sufficiently slow
so that its thermal equilibrium is maintained during the change is
called the quasi-static process. In the quasi-static process, since
the system is always kept in thermal equilibrium, the pressure, p,
volume, V', and temperature, T', can be determined at any moment.
The change of the gas is expressed by p—Vgraph as shown in Fig. 5.5.
The system changed in a quasi-static process can be traced back
to the initial state by another quasi-static process. Such a property

Isothermal

Isochoric change

change

Isobaric
0 change

—» V

Fig. 5.5.
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of being capable of retracing the state change is called reversible.
The quasi-static process is a reversible process.

5.3.2. The First Law of Thermodynamics

As shown in Fig. 5.6, we consider a gas contained in a cylinder.
Suppose a small quantity of heat, d'Q, is added to the gas and a
work, d'W, is done from outside to the gas in the cylinder. As a
result, the internal energy of the gas is increased by dU. Hence, the
energy conservation law can be written as

AU =d'Q + d'W, (5.9)

where the prime on d’Q and d'W are added in order to express that
they are freely changeable quantities, unlike the quantity of state
such as the internal energy. The law expressed by Eq. (5.9) is called
the first law of thermodynamics.

Piston

—d'W

Fig. 5.6.

Let a pressure of the gas in the cylinder be p and the cross section
of the cylinder be S, as shown in Fig. 5.7. If the piston moves a
distance, dx, the change of the volume of the gas is dV = Sdz. So
the work done on the gas is expressed as

dW = —pSdx = —pdV,

from which we see that when the volume of the gas is changed from
V1 to Vs, the work done on the gas is expressed as

Va
W:—/ pdV. (5.10)
Vi

For ideal gases the intermolecular forces can be ignored. There-
fore, the distance among molecules does not affect the internal energy.
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Fig. 5.7.

We have the following property for an ideal gas:

The internal energy of an ideal gas is determined only by
its temperature.

If the change of the temperature, AT, is the same, the change of
the internal energy is identical, however large the volume of the gas
changes.

Example 5.3. When the volume of the gas is kept constant, the
quantity of heat, C,, needed to increase the temperature of the gas
(1 mole) by 1K, is called the molar heat at constant volume.
When the pressure of the gas is kept constant, the quantity of heat,
C)p, needed to increase the temperature of the gas (1 mole) by 1K is
called the molar heat at constant pressure. By considering the
change of an ideal gas (n moles) at constant volume and at constant
pressure, show the following equations:

dU = nCydT, (5.11)
C,—C,=R. (5.12)
Equation (5.12) is called Mayer’s relation.

Solution

Suppose a quantity of heat, d’'Q, is added to the ideal gas of n mol
at constant volume, the temperature is increased by d1'. Hence, the
definition of the molar heat at constant volume yields

d'Q = nC,dT.

Because the volume is kept constant, the work done on the gas is
zero. Therefore, from the first law of thermodynamics (5.9), we have
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the following relation:
dU = d'Q = nC,dT.

This relation is Eq. (5.11). Because the internal energy is
determined only by its temperature, Eq. (5.11) holds true in any
processes with changing temperature, not only at constant volume.

Next, a quantity of heat, d'Q, is added to the ideal gas at constant
pressure, then the temperature is increased by d7'. If we denote the
pressure of the gas as p and the change of the volume as dV/, the first
law of thermodynamics is expressed as follows:

dU = d'Q — pdV. (5.13)

The ideal gas equations before and after the addition of d’'Q can,
respectively, be written as

pV =nRT
p(V+dV)=nR(T +dT).

from which we have the relation
pdV =nRdT.
Therefore, Eq. (5.13) can be expressed as follows:
dU = d'Q — nRdT. (5.14)

On the other hand, from the definition of the molar heat at
constant pressure, we have the relation

d'Q = nCydT. (5.15)

Since Eq. (5.11) holds true even at constant pressure, substitution
of Egs. (5.11) and (5.15) into Eq. (5.14) yields the relation (5.12).
|

Example 5.4. Considering a small adiabatic change, show that the
following relation among the pressure p, volume V' and temperature T’
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holds true in the quasistatic adiabatic process of an ideal gas:
pV7 = const., TV7~! = const. (5.16)

where v = C},/C, is the specific heat ratio and Eq. (5.16) is called
Poisson’s equation.
Solution

Consider a small adiabatic change from p, V', T to p + dp, V + dV,
T + dT'. The ideal gas equations before and after the change can be
written as follows:

pV =nRT
(p+dp)(V+dV)=nR(T +dT).

By taking the difference between the above two equations and
ignoring dp - dV, we obtain the relation:

pdV 4+ Vdp = nRdT. (5.17)

On the other hand, in the adiabatic change d'Q = 0, therefore,
the first law of thermodynamics is expressed as

nC,dT = —pdV, (5.18)

since dU can be described by Eq. (5.11). We eliminate ndT from
Egs. (5.17) and (5.18). Thus the following equation can be derived:
Co+RdAV dp av- dp

— 4+ —=0=7—+—=0
C, V+p 7V D )

where Mayer’s relation (5.12) and the definition for the specific heat
ratio, v = Cp/C,, have been used. By integrating both sides of this
equation, we get

logpV7 = C (C': an integral constant)

This is the first equation of (5.16). From this equation and the
ideal gas equation, pV = nRT', we eliminate p to obtain the second
equation of (5.16). [ |
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Advanced Problems

Problem 5.5. Brownian motion

Thermodynamics deals with two types of macroscopic states, equi-
librium states and non-equilibrium states. Equilibrium states are the
ones in which matter is uniform and static. The equation of states
for gas, which gives a definite relation among pressure, volume and
temperature, is a typical example related to equilibrium states. In a
mixture, the degree of mixing depends on pressure and temperature;
normally components mix well at higher temperature and they may
be separated at lower temperature. Reverse may be the case for a
special mixture.

On the other hand, we observe non-equilibrium phenomena; in
everyday life a mixture, which is initially non-uniform, approaches an
equilibrium state, which is uniform. Heat flows from the hotter part
to the cooler part. This phenomenon is called heat conduction.
In a mixture, solute flows from the higher concentration part to
the lower concentration part. This phenomenon is called diffusion.
The mechanism behind diffusion is fluctuation, which is caused by
collision of solute particles with solvent molecules. Einstein gave
a deep insight into the relation between fluctuation and diffusion.
Actually if one looks into the equilibrium state in a more detailed
way, it is not really static but more dynamic; namely the equilibrium
state is attained as the balance between competing directions of
evolution, which will be shown below by describing the motion of
solute particles in a solvent, as Einstein demonstrated.

Suppose we have insoluble powder particles whose density is
higher than that of water. If we put the powder particles into a
tube, which is filled with water, then the powder particles start to
descend. We may expect that they form sediment at the bottom of
the tube, but it is not the case. Rather, we have a gradual change of
concentration in the vertical direction; we have lower concentration
at a higher position and higher concentration at a lower position. As
we will see in Sec. I, the profile of powder concentration is determined
by the balance between two forces acting on the particles. Einstein
further thought that the profile is determined by the condition for the
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balance between a flow of descending particles due to gravity and a
flow of ascending particles due to diffusion from a high concentration
position to a low concentration position.

So there are two points of view for the same phenomenon; one is
the static view of the balance of forces and the other is the dynamical
view of the balance of competing flows. Combining these two views,
FEinstein could find a relation, called Einstein’s relation.

In sections I to III below, we will derive the diffusion coeffi-
cient Einstein found in 1905. Let g be the magnitude of gravity
acceleration.

I Concentration of powder particles and osmotic pressure

Powder particles scattered in the water with sufficiently low
concentration are known to behave like ideal gas molecules. If we
denote the gas constant with R, we have the equation of state,
pV = RT, for one mole of gas molecules, where p is pressure, V
is volume and 7T is absolute temperature. Similarly, if we denote the
osmotic pressure of N powder particles within volume V' with p and
Avogadro’s number with N, we have pV = NﬁART. Here T is the
absolute temperature of water.

(1) Express the osmotic pressure p in terms of the concentration

R

of powder particles n = %, the Boltzmann constant kg = N

and T'.

The concentration of the powder particles and its osmotic
pressure depends on the altitude. We denote the concentration and
the osmotic pressure at altitude h with n and p, respectively and
the concentration and the osmotic pressure at altitude h + Ah with
n+An and p+Ap, respectively. We also assume that the temperature
is uniform regardless of the altitude.

(2) From the equation derived in part (1), express the difference of
osmotic pressure, Ap, in terms of the difference of concentra-
tion, An.

Let us consider a rectangular parallelepiped of cross section
area A and height Ah (with the lower cross section at h and with the
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Height
A
Water
(P+4p)A
h+4h
h

Fig. 5.8.

higher cross section at h+Ah) within the water and study the balance
of forces acting on the powder particles within the parallelepiped.
Let us denote the mass of each particle with m. There are three
forces, gravity force, force due to osmotic pressure from the upper
cross section and force due to osmotic pressure from the lower cross
section. We neglect buoyancy force by assuming the density of a
particle to be sufficiently larger than that of water.

Since Ah is small, we may assume that the concentration n inside
the parallelepiped is constant. Then the total number of particles
within the parallelepiped is nAAh. The gravity force on the powder
particles is now nAAh - mg. The force due to the osmotic pressure
on the upper cross section is (p + Ap)A, while the force due to the
osmotic pressure on the lower cross section is pA.

(3) From the balance of these three forces, express Ap in terms
of Ah.

(4) Using the results of (2) and (3), express the concentration
gradient % in terms of g, kg, m,n and T.

The static view above does not give any insight into the dynamics
of powder particles. In Secs. II and III below, we will give the way
to measure the dynamics.
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IT Mobility of particles

We set a long cylindrical tube filled with water in the vertical
direction. We add a particle of mass m in the tube. Then the particle
moves downwards under the action of friction due to viscosity of
water. Stokes’ law is known for the friction F', which is proportional
to the velocity u of the particle, namely,

F = Cau,

where C is a constant determined by the viscosity of the water and
a is the radius of the particle. The particle will attain the ultimate
velocity, which is proportional to the gravity force mg, namely the
ultimate velocity is given by u = Bmg, where B is called mobility.

(5) Express the mobility B in terms of a and C.

From this, the down flow .J of particles determined by the gravity
and the viscosity, which is the number of particles that cross a
horizontal section per unit time and per unit area, is given by
J = nu =nBmyg.

III Diffusion coefficient and Einstein’s relation

Let us consider the case that the concentration of particles
depends on the position z.

The concentration at x is denoted by n and the concentration at
x + Az is denoted by n + An. Hence, the concentration gradient can
be expressed by %. As shown in Fig. 5.9, the diffusion flow J(z),
which is the number of particles crossing a section at = from the
left to the right per unit time per unit area, is proportional to the
magnitude of the concentration gradient in the direction opposite to
the concentration gradient, namely

An
J(x) = _DA—:B’ (5.19)

where D is called the diffusion coefficient.

As explained in Sec. II, the down flow due to the gravity and
the up flow due to the diffusion will be balanced, and its balance
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v
b

P

Fig. 5.9.

determines the equilibrium profile of the concentration obtained in
Sec. L.

(6) Express the relation between D and B in terms of kg and 7.
This relation is called Einstein’s Relation.

(7) Determine the diffusion coefficient D[m?/s] for particles of radius
1.0pm = 1.0 x 1075 m in the water of 20°C with two significant
figures. Here kg = 1.38 x 1072*J/K and the constant C
determined by the viscosity of the water is given by C =
2.00 x 1072 Pa-s (20°C).

The diffusion coefficient D determined here does not depend on
the gravity force acting on the particle.

IV Particle colliding with water molecules

We now put water and particles in a horizontal vessel so that the
concentration distribution is not influenced by the gravity, and then
observe the diffusion of particles. We take the horizontal direction as
the z-axis, as shown in Fig. 5.10.

As we mentioned in Sec. III, let us, furthermore, consider why the
diffusion flow is proportional to the magnitude of the concentration
gradient. Actually, particles change their directions of motion when
they collide with water molecules. Let us denote the average velocity
of particles with (v). They change the directions of motion in a time
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Put the powder here Water

Fig. 5.10.

/Water

x+1/2

Fig. 5.11.

interval t;,, called mean free time. The length [ = (v)ty, is called
mean free path, within which particles can move without collisions.

The number of particles flowing from the left region to the
right region per unit time per unit area of the cross section at x
is proportional to the average velocity (v) and the concentration
n(x —1/2) at position z — [/2, as shown in Fig. 5.11. Furthermore,
the particles have velocities of various directions. For simplicity, we
assume that the velocities are distributed equally in positive and
negative directions of the z-, y- and z-axes. Then we may assume
that one sixth of particles move in the positive direction of x-axis.
Therefore, the number of particles flowing from the left region to the
right region per unit time per unit cross section at z is §(v)n(z—1/2).
Similarly the number of particles flowing from the right region to
the left region per unit time per unit cross section at x is given by
svyn(z +1/2).

The diffusion flow J(z) is considered the difference between the
two flows.
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(8) When [ is sufficiently small, we may have

Il An [ An
BEYNS n(z+1/2) = n(z) + 5

—1/2) =
n(w—1/2) = n(x) —
Express D in terms of [ and (v).

V Behavior of a particle in the diffusion

Let us consider how a particle behaves in the diffusion. During a
time interval ¢, the particle changes its direction N = é times. The
displacement of the particle between the i-th change of its direction
and the (i 4+ 1)-th change is denoted by Az;. Then the position = at
the (N + 1)-th change is given by

N
:c:Aarl—kAa:g—i—u-—FAa:N:ZAa:i. (5.20)

i=1
Each displacement is irregular and so the average vanishes;
namely (Ax;) = 0. Therefore the average of the displacement at
time ¢ vanishes; namely (x) = 0. To understand the diffusion, let

us consider the average of the square of the displacement. From
Eq. (5.20), we have

N
(@) =) ((Az)*) + ) (AziAxy). (5.21)

i
If we consider that the displacement of each step is irregular and
independent from the displacements of other steps, we may assume

(Az1)%) = ((Az2)?) = -~ = ((Azn)?) £ 0,
(AziAzj) = (Azi)(Azj) =0 (i # j).

(9) Using the fact that the number of changing velocity during the
time interval t is written as N = i, express the mean square

displacement 4/ (z2) at time ¢ in terms of the diffusion coefficient
D and t.

Here, assume the displacement Az at each time is independent
of the one at another time. If you denote the x component of the
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velocity with v,, you may write Ax = v,t,. Because you can

neglect the influence of gravity on particles, the motion in each

of the three directions, x, y and z, are independent of each other.

If you write the y and z components of the velocity as v, and
2 2

vz, respectively, you may have (v;) = (vy) = (v?) = %<v2> from

(v2) + (v2) + (v2) = (v?). You may also use (v) = \/(v?).
(10) From the discussion above, you can see that particles in the
vessel will spread over the whole region of the vessel. Obtain
the time ¢ for the particles to spread over the whole vessel with
two significant figures by assuming the length of the vessel to be
10 cm and the radius of the particle to be 1.0 ym = 1.0 x 1076 m.
Suppose the temperature of the water is 20°C. From the result,
discuss whether it is realistic to wait for powder particles to
spread over the whole vessel without stirring the water.

(the 2nd Challenge)

Solution

(1) Using the concentration n of the particles and the Boltzmann
constant kg, we have the ideal gas equation:

N R
= L U kT
P V Na nkp

Namely, p = nkpT.
(2) The ideal gas equations at altitudes h and h + Ah are

p=kgTn, p+ Ap=kgT(n+ An),
respectively. Then we have
Ap = kgTAn.
(3) The balance of the forces on particles in the parallelepiped is
(p+ Ap)A +nmg - AAh = pA,

which yields Ap = —nmg - Ah.
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Using the results of parts (2) and (3), we have

An _ nmg
Ah kT’

When the particle attains its ultimate velocity, the gravity force
and the friction are balanced. The balance is expressed by mg =
Cau, which yields

1
mg = Cau=Ca-Bmg, .. B= Ca (5.22)

Since the concentration of particles is larger in the lower part of
the tube, the diffusion flow —D% is in the ascending direction.
The balance of the ascending flow and the descending flow,
J =nBmyg, is given by the usage of the result of part (4) as

D—==nB . D =FkpTB. 5.23
" —nbmg b (5.23)

From Egs. (5.22) and (5.23), we obtain

138 x107% x 293
2.00x%x 1072 x 1.0 x 10-6

D =2.0x 1073 m?/s.

J(z) is obtained as the difference between the number of
particles flowing from the left to the right and that from the
right to the left, per unit time per unit cross section at x.
Therefore we have

J(@) = gin(z —1/2) - =(vn(z +1/2)
1 [ An [ An
-5 { (-3 55) - (0 +3 52
1 An
= —E<U>ZE.
By comparing this with Eq. (5.19), we obtain
D=

6
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(9) In Eq. (5.21), using Az = v,ty, and (v2) = (v2) = (v2) = L(v?),

y z
we have
1t
(¢%) = N((Ax)®) = N(o})t, = gt—@z)t?m
Further, using | = (v)ty, ~ /{(v¥)ty, and 6D = (v)l =~ \/(v?)l,
we have

(z*y =2Dt . +/(z%) =V2Dt.
(10) From the result of part (9), we have
@)
2D’
When \/@ becomes around 10cm, we can say that the

particles have spread over the whole vessel. We put /(z2) =
10cm=0.10m and D = 2.0 x 10~¥m?/s, we obtain

_ 0.10
2x20x 1013

which implies that the particles will never spread over the whole

t =

t

=25 x10"Ys ~ 790 years,

vessel unless we stir the water. m

Problem 5.6. Thermal conduction

There are an enormously large number (roughly 1/10 of Avogadro’s
number Ny = 6.02 x 10?3) of gas molecules inside an empty large-
size plastic bottle. The molecules that constitute the gas are moving
almost freely, colliding occasionally with one another and interacting
among themselves through weak forces. In a collection of such a
large number of molecules its physical behavior can be expressed by
macroscopic quantities, which are obtained by statistically averaging
the behaviors of individual molecules. Temperature, pressure, flow of
gas, etc. are such macroscopic physical quantities that are observable
to us.

In the present study, we will consider the kinetic theory of gases
that interprets the macroscopic properties of a gas in terms of the
microscopic behaviors of the constituent individual molecules. Let’s
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try to explain the mechanism of a thermos bottle through a step-
by-step approach based on the kinetic theory of gases.

In the following, the gravitational force acting on a gas molecule

is neglected because the kinetic energy of the molecule is extremely
large as compared with the change in the gravitational potential
energy of the molecule.

I

11

In a gas where temperature and pressure are uniform, the
Boyle-Charles law holds almost exactly in a wide range of gas
parameters. When a gas of pressure p occupies volume V at
absolute temperature 7', the mathematical expression for this
law is

% = const. (5.24)
where the constant on the right-hand side is proportional to the
amount of the gas. There is another gas law that under the same
condition of temperature and pressure, all kinds of gases contain
the same number of molecules if their volumes are the same.
It is known that one mole of gas in the standard condition for
temperature and pressure (0°C, 1 atm) occupies the volume of
2.24 x 1072m? and the gas contains molecules of Avogadro’s
number, independently from the kind of the gas.

(1) Find the volume allotted to one molecule of a gas under the
standard condition for temperature and pressure.

(2) Suppose a gaseous molecule is a rigid sphere whose radius is
r=1.0 x 107'%9m. What is the ratio of the volume allotted
to one molecule in the standard condition of the gas to a
molecule’s own volume?

Suppose N gas molecules of mass m are confined in a box of
volume V. A distance between two face-to-face end walls of the
box, which are perpendicular to the z-axis, is L, and the area
of each wall is S, so that the volume of the box is given by
V' = LS. Let molecules be moving in the box along the z-axis
without colliding among themselves and let the velocity of i-th
molecule be v;. The molecules are supposed to collide elastically
with the wall, which is assumed to be fixed. Each gas molecule
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hits at and bounces off the wall, travels to the opposite direction
with the same speed, collides with the opposite wall, and moves
back and forth with the same speed.

When a molecule collides with the wall, it exerts an impulsive
force on the wall. Although the forces exerted by individual
collisions are impulsive, the forces exerted on the wall are
averaged to give an almost constant force, because the number
of collisions by all the molecules in a unit time is enormously
large. The pressure of the gas is the average force exerted by the
molecules per unit area on the wall.

(3) Find the expression for the time-averaged force f;, or the
impulse per unit time, exerted on the wall by the i-th
molecule moving with velocity v;. Also find the total force
F', which is the sum of the time-averaged forces exerted by
all molecules.

(4) Show that the pressure of gas is proportional to the number
of molecules per unit volume, %, by using the result of
part (3).

(5) Derive the Boyle-Charles law (5.24), by using the above
results and the fact that the average kinetic energy of a
molecule is proportional to the absolute temperature of the
gas, T

In Sec. II we neglected the collisions among gas molecules. In
this section, we treat molecules based on a more realistic model
in which they move randomly colliding with one another and
changing their speeds and directions in chaotic fashion.

(6) In this model of the molecular motion, the distribution of
molecular velocities is supposed to be identical in every
direction and therefore the average values of the squares
of the velocity components, v, v, and v., are equal to
each other: (v2) = (v2) = (v2). Using this relation and the
ideal gas equation, express the average kinetic energy of a
molecule in terms of the absolute temperature 7" and the

Boltzmann constant kg = N—Ii (R is the gas constant).
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We now introduce the concept of the mean free path. As its
name implies, it is the average distance traversed by a molecule
between two successive collisions. Let the mean free path be [.

(7) Suppose the molecules are spheres of radius r, then we expect
that on average there is a single molecule within a cylinder
of cross-sectional radius 2r and axis length [ (see Fig. 5.12).
From such a consideration, find the expression for [ in terms
of r and N/V, being the number of molecules per unit
volume.

r molecule

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2r

Fig. 5.12.

(8) Using the ideal gas equation, calculate the mean free path
of helium gas at T = 273K and 1 atm (=1.0 x 10° Pa) with
two significant figures. Use the following values: the molar
mass of helium gas 4.0 x 1073 kg/mol, the radius of helium
atom r = 1.0 x 1071 m, and the Boltzmann constant kg =
1.4 x 1072 J/K.

Based on the above argument, let us discuss the heat conduc-
tion due to a temperature gradient within a gas. Heat flows from
a region at high temperature to a region at low temperature.
Heat flow due to a temperature gradient is in close analogy
with electric current in a conductor due to an electric potential
difference. Let us introduce the coordinate shown in Fig. 5.13
and denote the absolute temperature at the position x by T'(z),
thus the law of heat conduction is given by the equation

AT
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T =T(-1) T =T(0) T=T®
e=e(-l) e=¢e(0) e=¢e(l)
on this plane 4 on this plane ; on this plane

&

Il

|
&

Il
=
&

17

Y

Fig. 5.13.

where @ is the heat flux, i.e., the quantity of heat transferred
per unit time and unit cross-sectional area, Ax is an infinitesimal
distance along the z-axis, and AT is the temperature difference
in the distance Az, so that % is the temperature gradient. The
proportional coefficient k is called the thermal conductivity,
whose unit is W/(m-K).

As obviously shown in Eq. (5.25), the more the thermal
conductivity is and the greater the temperature gradient is, the
greater the quantity of heat flows. The negative sign on the right-
hand side of Eq. (5.25) means that when k& > 0 the quantity
of heat is transferred from a high-temperature region to a low-
temperature region.

The heat conduction in a gas is caused by the energy
transferred from molecules of high energy to those of low energy
through their collisions, so it can be treated based on the
model of gas molecular motion in which collisions are taken into
account.
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We now derive the formula for thermal conductivity k& using
the following simplified model. Let us consider the quantity of
heat transferred from the region of x < 0 to the region of z > 0
through the plane z = 0 at temperature 7'(0) (see Fig. 5.13).

Assume the molecule that passes through the plane x = 0 has
energy e(=+l), which is the average kinetic energy of the molecule
at the last collision on the plane x = +[ separating the mean free
path from the plane x = 0. Let the number of molecules that
pass through a unit area of the plane x = 0 per unit time from
the region of z < 0 to the region of > 0 be fy, and the number
of those from the region of = > 0 to the region of x < 0 be f_.
As both of these numbers are proportional to the product of the
average molecular velocity v = y/(v?) on the plane x = 0 and the
number of molecules in a unit volume N/V, f, and f_ are equal
to each other. Therefore we denote them by f, which is given by

aNv

f:f+:f—: V’

where « is a proportional constant.

The quantity of heat () transferred through a unit area of the
plane x = 0 per unit time from the region of z < 0 to the region
of > 0 is given by Q = Q4+ — Q_, where Q+ = [ -e(=1) is
the kinetic energy of the molecules transferred from the region
of x <0, and Q_ = f-e(+1]) is that from the region x > 0.

(9) Using the relation

Ae(x)

e(xl) =e(0) £1 Ay

(double-sign in same order)

=0

and the result of part (6), find the expression for the
thermal conductivity k of gases. Here %\xzo is the rate
of change of the average kinetic energy e with respect to x
on the plane x = 0. If necessary, you can use the relation

Ae
Ax

_ A
AT

AT
Ax

=0 =0 =0



Thermodynamics 217

Then calculate the thermal conductivity & of helium gas
at T = 273 K with two significant figures, letting o = 1.
(10) We now apply the formulae derived for the heat conduction
to a thermos bottle. The thermos bottle is a double-walled
container, with a near vacuum between the walls to prevent
the heat conduction.
Suppose the two walls are separated d = 1.0 cm from each
other and helium gas of 1 atm is filled between the walls.
By lowering the helium gas pressure, we are planning to
reduce an outflow of heat to about 1(1]—0. For that purpose,
to what extent should you lower the pressure of the helium
gas? Find the necessary pressure for the case where the gas
temperature is T' = 273 K. Neglect thermal radiation from
the walls.

Hint When the mean free path [ becomes longer than the
distance d between the walls, the molecules carry the energy
obtained on one wall straight to the opposite wall. In this
case, we should use the distance d rather than the mean
free path [.

(the 2nd Challenge)

Solution

(1) Dividing the volume of a mole of gas by the number of molecules
in a mole of gas results in

2.24 x 1072
- =372 x10"m’
6.02 x 10~ 22x10 "m
(2) The volume of a molecule is # = 4.19 x 1073°, Dividing the
previous result by the volume of a molecule, we obtain
3.72 x 10726 5
W = 8.88 x 10 (tlmes).

Therefore the volume allotted to one molecule is about ten
thousand times the volume of a molecule itself.

(3) The impulse that i-th molecule exerts on the wall by a collision
is 2muw;, which is equal to the change of its momentum, and the



218

Physics Olympiad: Basic to Advanced Exercises

time for this molecule to travel a round trip between the two
walls is Qv—L Therefore the molecule collides & times per unit
time with one wall. The average force of the molecule exerting

on the wall, f;, is equal to the impulse per unit time, that is

BN

(¥ muv
f,‘ZQm’Uz‘Xﬁ: 7 .

The total force ' summed over all the molecules is

1 N
i=1

Because the pressure of the gas is p = %
1L, 1Y
p= EvaZ = Vval
i=1 =1
By using the relation Zz L v? = (v?) for the mean square

velocity of molecules, we have the equation
p=—m(v?). (5.26)

Namely, p is proportional to N/V .
The average kinetic energy per molecule is given by

Hence it follows that ’% = const.
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In the three dimensional case, the average kinetic energy per
molecule is given by

By using the one dimensional result (5.26) with (v?) replaced
by (v2), we obtain

_ v

3 2
e—§m<v)— oN

T

Substitution of the ideal gas equation, pV = NiART , leads to
the relation

Because on average there is one molecule in the cylinder of
length [ and cross-sectional radius 2r, it follows that

1 1

From the ideal gas equation it follows that

N _p
V=NkgT . —=-—7.
P B V " kel
Substitution of this relation into the result of part (7) leads to
the following equation:

- ksT/p
dnr2

(5.27)

By using the given numerical values, we obtain

[=3.0x10""m.
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(9) The given relations yield

Q. = el =agrofe) -1 22 x:o}’
QO = fe(+1) = a%v {6(0) 1 Az—(;) x:o}’

from which we obtain the following equation:

N  Ae(z)

Q=Qs - Q- = —2ag0l —

=0

From the relation e = %k‘BT, we can write

Ae(x) _Ae AT 3, AT
Ar |, AT oo Az|,_, 2" Ar 20
Combining the last two equations, we obtain
N_ AT
= —3akp—=lv — . 5.28
@ By AL 20 (5:28)

Substitution of the relations, %l = ﬁ and v = 4/ ?’kT‘fLT, into
the above equation leads to

Q o 30ék]3 3kBT g
o dmr2 N m Ax

Hence the following expression for k is obtained.

=0

L — 30ék]3 3kBT
"~ 4mr? m
By using o = 1, T'= 273 K and the data for the helium atom,
we obtain

k=0.44W/(m - K).

(10) According to the result of part (9), the thermal conductivity of
a gas depends only on temperature T', but it does not depend
on pressure at constant temperature.

In the following, we consider the temperature of the gas to
be constant. The result of part (8) states that the mean free
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path is inversely proportional to pressure and hence it increases
as pressure decreases. When mean free path [ becomes longer
than the distance between the walls d = 1.0 x 1072m, [ in
Eq. (5.28) is replaced by the distance d as we have pointed out
in the hint. Then the thermal conductivity that is proportional
to %d decreases as the number density %, i.e., the pressure p,
decreases.

From Eq. (5.27) in part (8), the mean free path at pressure of
1 atm (pp = 1.0 x 10° Pa) is [ = 3.0 x 10~" m and the pressure
at which mean free path [ is equal to d = 1.0 x 10~2m is

p= épg = 3.0 Pa.

When the pressure is lowered less than 3.0 Pa, [ is replaced
by d and the thermal conductivity of the gas decreases in
proportion to the pressure. Therefore if the pressure is lowered
to 1/100 of the above value, the thermal conductivity is also
reduced to 1/100.

The above consideration shows that in order to reduce the
outflow of heat to 1/100, the pressure of the gas should be
lowered to

3.0 x 10~ *Pa. -
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Chapter 6

Modern Physics

Elementary Problems

Problem 6.1. Tests of general relativity

Because an atomic nucleus consists of several elementary particles,
it has various internal states with intrinsic energies. Any nucleus has
internal energy in addition to the mechanical energy associated with
the motion in a space.

When the state of an atomic nucleus changes from a higher energy
state to a lower energy state, the nucleus emits an electromagnetic
wave of high frequency (very short wavelength), which is called a
gamma ray. An electromagnetic wave such as a gamma ray exhibits
wave-like and particle-like properties simultaneously. Accordingly, we
consider that a gamma ray consists of small packages of energy called
photons. The energy and momentum of a photon depend on the
frequency of the corresponding electromagnetic wave. The energy of
the photon with frequency v is given by hv (h is called Planck’s
constant), and its momentum is h—C" where ¢ is the speed of light
in vacuum. The direction of the momentum is the same as that of
the propagation. The photon behaves as a massless particle with the
momentum but it differs from a material particle whose momentum
is defined by the product of the mass m and the velocity v.

We consider for a while that an atomic nucleus is fixed at a point
in a space. As shown in Fig. 6.1, when the nucleus makes a transition
from an energy state Ey to an energy state Efy, it emits a gamma
ray of frequency vy, with the energy given by

hUo = EH - EL. (61)

223
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Fig. 6.1.

Inversely, a fixed nucleus with the energy FEp, can absorb the

gamma ray with the same energy as the energy difference between

the two states, and then it can be excited to the energy state Ejy.

This process is called the resonance absorption.

In a general case where the nucleus can move freely in a space,

the frequency of the emitted gamma ray does not satisfy Eq. (6.1)
and the gamma ray cannot be absorbed by another nucleus in the

energy state Ef,.

(1)

When a free atomic nucleus emits a gamma ray, it recoils in
the direction opposite to the direction of the propagation of the
gamma ray as required by the law of momentum conservation
(see Fig. 6.2). Suppose a nucleus at rest emits a gamma ray
with frequency v. Then, find an expression for the speed of the
recoiling nucleus, denoting the mass of the nucleus by M.

Nucleus

Gamma ray

Fig. 6.2.

Find an expression for the kinetic energy K of the recoiling

nucleus. The kinetic energy K is called the recoil energy.

When the nuclear energy is reduced from Fy to FEr,, the energy

hv of the emitted photon is equal to hvy — K and the frequency

v of the gamma ray is slightly less than 1. Let the energy of the

emitted photon be E. Calculate the value of K/FE, taking into
hv 1

account that hv ~ hyg and 77 = IX106°
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Because the photon energy is decreased by this small recoil
energy, it is not sufficient to excite a nucleus with the energy Ey,
to the energy state Fyy. Thus, it is difficult to observe the resonance
absorption of the gamma ray by freely moving nuclei. In a solid,
however, atomic nuclei are rigidly bound to each other, and hence
the recoil energy is derived by replacing M with the total mass of
the solid. This recoil energy is practically zero and the gamma ray
can be absorbed by another atomic nucleus of the same element in
the solid. This phenomenon is called the Mo6ssbauer effect.

When a radiation source or an absorber is moving, the resonance
absorption is influenced by the Doppler effect. The Doppler effect
is well known as the change in frequency of observed sound when the
source and the observer are moving relative to each other. Similar
effect occurs for light as well.

We, first, summarize the Doppler effect for sound.

When a source of sound with frequency vy approaches a station-
ary observer at velocity v, the observed frequency v can be written
in terms of the speed of sound V' as follows:

Vv 1
V= g = .
T (w/v)

V—-v
When an observer moves with velocity u toward a stationary

(6.2)

source, the sound velocity relative to the observer will change to
V 4+ u and the observed frequency v can be evaluated as follows:

uzv;uy():(l—l—%)uo.

Next, let us consider the Doppler effect of electromagnetic waves.

When a source of light with the frequency vy approaches a
stationary observer at velocity v, which is much smaller than the
speed of light ¢, the observed frequency v is given by the same formula
as the Doppler effect for the sound emitted from a moving source:

1

(6.3)

When the speed of the light source, v, is close to the speed of
light, ¢, we cannot neglect the effect of time dilation predicted
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by the theory of special relativity. The time dilation in that theory
means that, the time interval T" between two events measured in the
frame where the observer is at rest is given by

T
V1= (/e?

in terms of the time interval Tj in the frame where the light source

is at rest. This relation can be applied to the period of oscillation
of the light and, accordingly, v in Eq. (6.3) should be replaced by
V1 — (v/¢)?vy. Hence, by multiplying /1 — (v/¢)? to the right-hand
side of Eq. (6.3), we can obtain a frequency v measured by the
observer as follows:

V1= (v/e)? 1+ (v/e) (6.4)

T/ TN TS (w0

The frequency of the gamma ray is also shifted by the gravitational
force. When we observe photons emitted from a high place above the
ground, we observe that the energy and the frequency of the photons
increase. This phenomenon for massless photons is not comprehended
by the law of universal gravitation but by the theory of general
relativity.

The time interval between two events measured on the ground
is shorter than that between two events measured at a higher place.
It shows the time dilation due to the gravity.

Let us evaluate an effect in the theory of general relativity.

The inertial force acts on every object in a reference frame moving
with acceleration. A motion of a free-fall body under the influence
of gravitational and inertial forces is equivalent to that falling in the
inertial reference frame which is not under the influence of gravity.

(4) Supposing that you are free falling, consider the case that you
detect a flash of light with frequency 1y emitted from a point of
height H above the ground. It takes time t = % for the flash
to travel from this point to the ground. During the time ¢t = %,
you gain the speed v = % where g is the acceleration of gravity.

You can, then, consider a stationary observer on the ground to
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be rising relative to you with the speed v = %. Thus, you may
interpret the increase of frequency not by the gravity but by the
Doppler effect. Assuming v/c < 1, find an expression for the
ratio %—0” of an increase Av of frequency to the original frequency

Vo by using the approximation formula, ﬁ ~ 14+x when z < 1.

In 1960, Robert Pound and his graduate student Glen A. Rebka
Jr. found the frequency shift caused by the gravity, using the height
difference of 22m. They oscillated the radiation source so that the
Doppler shift by the motion of the source compensates the frequency
shift due to the gravity, and observed the resonance absorption.
By this experiment the theory of general relativity was verified.

(the 1st Challenge)

Solution

(1) Denoting the recoil speed of the nucleus by v and using the
conservation law of momentum, we have
hv _ hv

My — — = : = —.
) p 0 .. w e

(2) The recoil energy of the atomic nucleus is

1 1 w\?  (hw)?
K=-Mv*=_-M|-—) = .
2" T3 < > 2M 2

(3) Evaluating the ratio of K to E = hvg, we obtain

K _ (w)*)2Mc®  hv ISV SR
E hug ToMe2 T 27 4x106 0 8x 106

(4) From Eq. (6.4), we have

. 1+ (v/e) "
| 1 - (v/e)
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Thus, we find the expression for the ratio Av/iy as follows:

Av _v—w (/gu v _gH

Vo v vw ¢ 2

Advanced Problems

Problem 6.2. Theory of special relativity and its
application to GPS

According to the theory of special relativity, a couple of clocks moving
relative to each other, as one in a moving train and another at rest
on the ground, follow different time progress. In the following, we
will derive fundamental equations in this theory and apply them
to the problem of positioning by a car navigator. For this purpose,
we will consider experiments in which sound and light travel on
a vehicle moving relative to the ground. In such a description, we
denote the time and space measured by the clock and ruler placed
on the ground as (t,z) and those measured by apparatus carried by
the moving vehicle as (¢, /).

I In Secs. I and II, we will consider a sound wave, which propagates
through air at speed V. We assume in these two sections that
observers of experiments instantaneously detect flashes of lamps
because the light propagates much faster than the sound.

Suppose there is a vehicle with two carts combined by a solid
long bar as shown in Fig. 6.3. It moves rightward along the x-axis
at uniform velocity v. Each cart carries a set of a loudspeaker
and a lamp and let the distance between the two loudspeakers
be L. When the loudspeaker on the left cart passes by a point O,
a person on the left cart sends a sound pulse and simultaneously
flashes the left lamp. That instant defines the time ¢ = 0 of the
clock on the ground. One end of a ruler, which lies on the z-
axis on the ground, is placed at the point O, which defines the
origin of the coordinate x = 0. At the instant when the person
standing on the right cart detects the sound pulse from the left
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Fig. 6.3.

loudspeaker, he flashes the lamp and simultaneously sends a
sound pulse from the right loudspeaker to the left cart. The
first person on the left cart flashes the lamp upon detecting the
sound pulse from the right cart.

An observer standing on the ground observes this experiment.
To solve the problems in Sec. I, assume that the air between the
two carts remains at rest on the ground, so that the sound prop-
agates between the carts at speed V(> v) relative to the ground.

(1) When does the observer detect the flash of the right lamp?
Let this time be t; as measured by the clock on the ground.
Express the time ¢ in terms of L, V and v.

(2) When does the observer detect the second flash of the left
lamp? Let the time be t5 as measured by the clock on the
ground. Express the time t5 in terms of L, V' and v.

In the next experiment a large and long box is set on the vehicle,
as shown in Fig. 6.4. The two persons in the box manipulate the
lamps and loudspeakers in the same manner as those in the pre-
vious experiment. The whole system moves rightward at uniform
velocity v. Because the air enclosed in the box is at rest relative
to the box, the sound pulses propagate at speed V' relative to
the box. The time ' = 0 as measured by the clock in the box
is defined by the instant when a pulse of sound is sent from the

| L gl =

fONN®) OO e

Fig. 6.4.
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left loudspeaker. One end of a ruler that defines the origin of
coordinate 2’ = 0 is fixed at the position of the left loudspeaker.
An observer standing in the box observes this experiment.

(3) When does the observer detect the flash from the right lamp?
Let this time be ¢} as measured by the clock in the box.
Express the time ¢} in terms of L, V and v or a part of these
three quantities.

(4) When does the observer detect the second flash from the left
lamp? Let the time be ¢, as measured by the clock in the
box. Express the time difference ¢/, — ¢} in terms of L, V' and
v or a part of these three quantities.

(5) The time ¢ = 0 as measured by the clock placed on the
ground is defined by the instant when the sound pulse is sent
by the left loudspeaker. The location of the left loudspeaker
at that moment defines x = 0 of the ruler placed on the
ground. When does the right lamp flash? Let the time be ¢;.
Show that ¢; equals .

The result of part (5) implies that both clocks, the one in the
box and the other on the ground, follow the same time progress.
However, Albert Einstein showed that two clocks should follow
different time progress, if the two clocks are moving relative to
each other.

We assume that a lamp and a mirror are placed at the left and
right ends on the vehicle, respectively, as shown in Fig. 6.5 and
the vehicle moves rightward at uniform velocity v. The distance
between the lamp and the mirror is L as measured by the ruler
placed on the ground.

At the instant when the lamp passes the point O, the left
person flashes the lamp. This instant defines ¢ = 0 and the

I 1 =

Fig. 6.5.
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position of O defines x = 0 as measured by the clock and the
ruler fixed on the ground, respectively. The pulse propagates
rightward and is reflected by the mirror at the right end, coming
back to the position of the lamp.

In Sec. III, we consider the case in which this experiment is
observed by a clock and a ruler fixed on the ground, while in
Sec. IV the case in which observation is made by a clock fixed to
the vehicle. An important point of the Finstein’s theory is that
the speed of light relative to either observer has the same value
about 3 x 108 m/s. This universal speed of light is denoted by c,
hereafter.

(6) When does the light pulse arrive at the mirror? Let this time
be t; as measured by the clock on the ground. Express ¢ in
terms of L, v and c.

(7) When does the light pulse reflected by the mirror come back
to the position of the lamp? Let this time be t5 as measured
by the clock placed on the ground. Express the time t9 in
terms of L,v and c.

We now analyze this experiment in terms of the time measured
by the clock carried by the vehicle. The moment when the lamp
flashes defines the time ¢ = 0 as measured by this clock. Let
the time when the light pulse arrives at the mirror be ¢ and the
time when the pulse comes back to the position of the lamp be
t,,. Because the light pulse goes to the mirror and comes back to
the lamp on the vehicle at the same speed ¢, t, should be twice
of t]. Accordingly, if the two clocks, the one on the cart and the
other on the ground, follow the same time progress, the relation
to = 2t; should hold. However, the result of part (7) implies that
it is not the case and the two clocks progress in different manners.

Then, Albert Einstein thought that the time indicated by
the clock on the vehicle should not be equal to that by the
clock on the ground, when the two clocks relatively move to one
another, and he assumed that there is a linear relation between ¢
and t':

t' = at + b(z — vt), (6.5)
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where a and b are constants. In addition, he considered that the
scale of a ruler on the vehicle is possibly different from that on the
ground and he assumed that there is a linear relation as follows:

' = at+ Bz — vt), (6.6)

where the origin of coordinate of 2’ is defined by the position of
the lamp.

Now we determine the constants a,b,a and [ from the
following arguments about an experiment on the vehicle shown
in Fig. 6.5.

Because the lamp is located at x = vt in terms of the time and
the coordinate measured by the clock and the ruler fixed on the
ground and at ' = 0 in terms of the coordinate system moving
with the vehicle, we find from Eq. (6.6) that o = 0.

(8) Using Eq. (6.5) and the relation t,/t] = 2, derive an
expression for b in terms of a,c and v.

(9) Let a light pulse be emitted at ¢ = ¢’ = 0 from the lamp. We
first follow this pulse with the clock and ruler fixed to the
vehicle. Suppose at time t' the light pulse passes a point
denoted by P, which is located at z’. Then, we have the
relation

2 =ct'. (6.7)

If we follow the same light pulse with the clock and ruler
fixed to the ground and denote the position P by x and the
time of arrival at P by ¢, then we have the relation

x = ct. (6.8)

Referring to this experiment, derive an expression for § in
Eq. (6.6) in terms of a, c and v.

(10) Consider another vehicle that moves at velocity —v relative
to the vehicle shown in Fig. 6.5. The time and the
coordinate measured by the clock and ruler carried by the
new vehicle are denoted by ¢’ and z”, respectively. Derive
expressions for ¢t and 2’ in terms of ¢/, 2’,v, a and c. To
derive the expressions, use the relations for # and b found
in parts (8) and (9).
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(11) Because the new vehicle is at rest relative to the ground,
we should have the identical relations ¢ = ¢t and = = 2”.
Using this fact, derive an expression for a in terms of ¢ and
v. Then, derive the relations

t = M ! = a:—ivt (6.9)

V1= (v/e)* V1= (/e

(12) Let z be a quantity sufficiently small as compared with
unity, then we can use the approximation (14 2)? = 1+ pz.
Assuming that (v/c)? is sufficiently small as compared with
unity, use this approximation for Eq. (6.9) to express t’ and
z’ by the sum of a term without ¢ and a term proportional

to ¢ 2.

V The Global Positioning System (GPS) is a system that provides
information about our position on the ground using data con-
veyed by electromagnetic waves from satellites. Car navigators
and some cellular phones are its terminals by which we can know
our positions. Here, we consider an application of the theory of
special relativity to this positioning system.

The car navigator communicates simultaneously with four
satellites for positioning in the three dimensional space. Here,
however, we consider a simplified system as shown in Fig. 6.6.
In this model, the two satellites move rightward with the same
velocity v in the same orbit as the car does. Suppose two pulses
of the radio wave, the one transmitted by the satellite 1 located
at position x; at time t; and the other transmitted from the
satellite 2 located at position xo at time to, arrived at the car
navigator simultaneously. These positions and times, t1,%2,
and x9 are measured by the clock and ruler on the ground. If
the car navigator receives these pulses at position x and at time

v v
e ——>
Sateliite 1 % Satellite 2
e B
0 (xp, 1)) (x, 0 (3, 1)

Fig. 6.6.
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t, we have

|lx — x| = c(t —t1), |x— 22| = c(t — t2). (6.10)

If we solve these two equations for x, we can obtain the position
of the car. In the following discussion, restrict yourselves to the
case that x; < x < x5 and insert the value v = 3.8 x 103 m/s for
the velocity of the satellite in numerical calculations.

(13)

(14)

In the GPS, clocks play a significant role. Clocks are carried
not only by satellites but also by car navigators. Therefore,
instead of solving the coupled Eqs. (6.10) we may substitute
the time ¢, as measured by the clock in the car navigator
for ¢ in one of the two equations in (6.10) and solve the
resultant single equation. How accurate should we measure
the time ¢, by the clock in the navigator in order to keep
the error in a solution for = less than 1 m? Show the upper
limit of the allowed error in t,.

An error in time by the radio clock is typically 1 ms because
it uses time signal transmitted from an antenna several
hundred kilometers away. It is much larger than the upper
limit of error in time required in part (13). Actually, the
GPS uses atomic clocks installed in satellites, which achieve
an accuracy around 1ns (1ns = 107%s). Solve the coupled
equations (6.10) for the position x of the car in terms of
x1,t1,T9,to and c¢. Then, estimate an uncertainty in the
computed value of x.

A pulse signal from the satellite 1 is tagged with time ¢}
when the pulse is transmitted and with position ] of the
satellite at that moment. Values of quantities x; and t;
in Eq. (6.10) are calculated from (t},z}) by the inverse
transformation of the formulae in Eq. (6.9). Quantities zo
and to in Eq. (6.10) are similarly calculated by information
on z, and t, from the satellite 2. Two pulses, the one
tagged as (t],0) and the other tagged as (t5, L), arrive at
the car navigator simultaneously. Derive an expression for
x in terms of ¢}, t}, L, ¢ and v. The relativistic effect should
be considered in the approximation employed in part (12).
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(16) Suppose pulses transmitted from the two satellites at t] =
th, = 0 arrive at the car navigator simultaneously. Then the
position of the car navigator is

L

Ea

if the relativistic correction is not considered. Actually,

xTr =

this does not represent the true position of the car
navigator. Evaluate the error of position in meter when
L =2.4 % 10* km.

The result of part (16) implies that, if the GPS does not include
the relativistic effect, it will generate practically serious errors.
Actually, because electromagnetic waves between satellites and car
navigator are influenced by gravitational field of the earth and
rotation of the earth, the GPS should be planned to inform our
position, taking into account the effect of the general relativity as
well.

(the 2nd Challenge)

Solution

(1) Because the vehicle moves a distance vt; in time ¢, the position
of the right loudspeaker at time ¢; is vt; + L. For this period,
the sound propagates the distance V1. Therefore, we have

Vti =vt1 + L.

By solving this relation for ¢1, we find

L)V
= —1 .
1—v/V
(2) During the time to—t1, the vehicle moves rightward the distance
v(ty — t1). For this period, the sound pulse propagates the
distance L — v(to — t1). Hence, we have

V(tg - tl) =L- ’U(tg — tl).
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Then we can obtain
L)V

to —t] = ————.
2 1+0v/V

We insert the expression for ¢; derived in part (1) into the
left-hand side of this equation to find

b L)V . L/v._  2L/V

2TV T 140/V 1= (V)2

(3) Because, during the time ¢/, the sound propagates the distance

L at speed V, we have

< &

th =

(4) Because it takes the time ¢, — ¢} for the sound to propagate the

distance L at speed V', we find
L

th—th = =.
2 1 V

(5) Because the sound propagates at speed V + v relative to the
ground during the time ¢y, we replace V in the result of part

(1) with V + v to obtain
tl — V,
which is the same expression as that for ¢} derived in (3).
(6) By replacing V' in the result of part (1) with ¢, we find that

L/c
t = .
1—wv/c

(7) Replacement of V in the result of part (2) with ¢ yields
L/c L/c 2L/c
to = + = 5"
l—v/c 14v/c 1—(v/e)
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By substituting
ty = aty +b(x1 —vty), th = ats + b(xe — vty).
into 2t} = t}, we can get
Q[th + b(fL‘l — ?ﬂfl)] = aty + b(fL‘g — ’Utg). (6.11)

The times, t; and t2, are given by parts (6) and (7),
respectively. The coordinates, x1 and x9, being measured by
the ruler fixed on the ground, are those of the mirror at ¢; and
of the lamp at to, respectively. Therefore, we have 1 = L + vty
and wo = vty. Substitution of these relations into Eq. (6.11)
yields

2(aty + L) = ato.

If we substitute the expressions for ¢; and t2 obtained in (6)
and (7) into this equation, we obtain

vL/c?
————a+ Lb=0.
1 (v/c)Qa + 0

Then, we find

v/c?

e Ok

(6.12)

Because o = 0, substitution of Egs. (6.5) and (6.6) into Eq. (6.7)
yields

B(x — vt) = clat + b(x — vt)].

Then we substitute x = ¢t into this equation and get

2

C_U[CH'b(C_U)] = a2 (6.13)

B =

where b was eliminated by using Eq. (6.12).
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The expressions for b and ( in Egs. (6.12) and (6.13) are
substituted into Eqs. (6.5) and (6.6). Then we obtain

o = a(z — vt)
1—(v/c)?

Replacement of x,¢,2’,t and v in the above expressions with
2/t 2", t" and —v yields

. 2
and t’—at (v/c’)z

=T o (6.14)

/ / / 2\ ./
s a(z’ + vt’) and ¢ — at + (v/c*)x '
1—(v/e)? 1 —(v/e)?

t'+ (v/c*)x’
1—(v/c)?

=ofot- %) +e (@) 0] iz

a2

-t
1—(v/c)?
Comparing the first term with the final term, we obtain

a=+/1-(v/c)2. (6.15)

If we insert this expression of a into Eq. (6.14), we find

t=t"=ua

v t—(v/c?)x and o — r — vt

V1= (v/¢)? V1= (/e

Note: The relation of Eq. (6.15) can be derived in an
alternative way as follows:

,_ ala + o)
= (/o2

a? a?

~ T (e (t- o) | = T

The comparison of the first and the last term yields Eq. (6.15).

r =T
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(12) According to the formula presented in the problem, we find

1 2
~ 4o

Substitution of this into the right-hand side of Eq. (6.9) yields

— (v/P)x v v
t’Z@%Z(“ﬁ) [”%(zﬂ
v 1 /v\2
—t— e+ (2) ¢ (6.16)
x'z%z(w—uﬂ%—%(%)ax—vt) (6.17)

(13) Substitution of ¢ = t,, into the left equation of Eq. (6.10) yields
x=x1+ c(ty — t1).

Hence, if the error |At| is generated in the measurement of
tn, an error |Az| of the calculated value of z becomes

|Ax| = |cAt], (6.18)
which follows from Eq. (6.18) and the requirement |Az| < 1m
that

1m

At < c—o——
3.0 x 108 m/s

=33x107°.

(14) If we solve the coupled equations
r—x1=c(t—t;) and xzo—x =c(t—t2),
we obtain

T+ T2 c
= —— = — —(t1 — t9). 6.19
5 2(1 2) (6.19)

If t; and to measured by atomic clocks in satellites involve
the uncertainty |At| = 1ns, the uncertainty in the position
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computed by Eq. (6.19) is estimated as

|Az| = ¢|At] = 3.00 x 10° x 1.0 x 107 = 3.0 x 10"'m

(15) Because a car moves much more slowly than satellites, we may
employ the approximation in which the car is at rest on the
ground and the satellite moves with velocity v relative to the
car. Then, using an inverse transformation of Eq. (6.9) and
the approximation in part (12), we obtain

1 rv\2
~ / / - -
x =~ (x —|—vt)[1—|—2<c>} and

t ~ t’+vx—/ 1+l<3)2
c2 2\c/ |

Substitution of 2’ = 0 and ¢’ = ¢} into these two equations
yields

1 2 1 2
xlzvtll[l—i—?(%)] and t1:|:1+§(%):|t/1,

and substitution of 2’ = L and ' = ¢/, yields

B , 1 /v\2
xo = (L + vty) [14—5 (E) and

to = <t’2 +vc£2> [1 + % (%)2]

If we substitute these four expressions into Eq. (6.19), we find
that

L v 1 /v\2 v—c v+c 1 /v\2
] (e [
’ 2[+c+20}+<2 1) PR
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(16) Substitution of ¢} =) = 0, v = 3.8 x 103m/s and L = 2.4 x
10 km into the results in part (15) yields
2.4 x 107 ( 3.8 x 103> L
r=——" 1

207 Y ) 2 24152
9 3.0 x 10° g Tlo2m,

up to the first order in (v/c).
Hence, the position of the car deviates by 152 m from the
position predicted by the non-relativistic theory.

Problem 6.3. The Bohr model and super-shell

In the 17th century, Sir Isaac Newton formulated laws on motion
of a particle in a wide range of scales, from “the fall of an apple”
on the earth to the motion of planets in the solar system. It turned
out at the beginning of the 20th century that Newton’s laws cannot
be applied to motions in the microscopic world, i.e., the objects in
atomic scale. In order to describe and to predict such motions, it has
been recognized that a totally new theory would be necessary.

In these circumstances, a lot of physicists contributed to establish
the quantum theory. In particular, N. Bohr played a leadership role
at the early stage. By introducing the concept of the stationary
state as well as the frequency condition, he constructed what
is called the semi-classical quantum theory, which explained
the experimental results on atomic spectra. Today, the quantum
theory has been recognized as a theory that describes a lot of
properties of materials such as color, conductance, and hardness from
a microscopic point of view.

In this problem, we consider the motion of an electron in
a microscopic system on the basis of the semi-classical quantum
theory. For that purpose, we denote the mass and the charge of
an electron by m and —e, where e is the elementary electric charge.
We first apply Bohr’s quantization condition and, if necessary, the
generalized quantization condition proposed by Sommerfeld, Wilson,
and Ishihara, to a microscopic system.
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I First, let us consider a hydrogen atom, using the Bohr model.

In that model, the nucleus (proton) is a positive point charge
located at the center of the atom, in which an electron, a negative
point charge, moves in a circular orbit around the nucleus at
a constant speed. In the quantum theory, all objects exhibit
properties of waves as well as those of particles. This kind of
wave is called the matter wave. The wavelength of the matter
wave (called the de Broglie wavelength) is proportional to
the inverse of the momentum of the particle and its proportional
coefficient h is known as the Planck constant.

The quantization condition given by Bohr is equivalent
to the statement that in the circular motion of the electron the
circumference should be the de Broglie wavelength A multiplied
by a positive integer. The positive integer denoted by n is called
the quantum number and the electronic state specified by the
quantum number n will be called the n-th stationary state,
hereafter.

(1) Write down the relation between the de Broglie wavelength
A, and the radius r,, of the circular orbit of an electron in
the n-th stationary state.

(2) Noticing that the electrostatic force between the nucleus
and the electron plays the role of the centripetal force, find
an expression for r,. Denote the proportional constant in
Coulomb’s law by kq.

(3) Using 7, acquired in the above question, find an expression
for the energy of the electron FE,, in the n-th stationary state.

Bohr succeeded in calculating the spectral series of the
hydrogen atom. He assumed that the hydrogen atom will emit a
photon when the electronic state changes from a higher energy
state to a lower energy state and the energy of the emitted
photon is equal to the difference of energies of the electron before
and after the transition. If we denote the energies before and
after the transition by FE,, and E,, respectively, the frequency
of what is called the Lyman series of the spectrum is derived
by substitution of the expression of energy derived in part (3)
into the energy differences F,, — E, between the states with
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n' =2,3,4,... and with n = 1. In the same manner, the Balmer
series of the spectrum can be described by the energy differences
between the states with n’ = 3,4,5,... and with n = 2. It is
verified by these results that the quantum theory is very useful.
Next, we consider an electron that moves at a constant speed
along the z-axis back and forth between two walls located at
x = 0and x = L(L > 0). We employ the condition that
nA = 2L with the positive integer n. This is analogous to the
Bohr quantization condition, because the twice of the distance
between the two walls, which is the magnitude of displacement
during one lap of the motion, corresponds to the circumference
in the case of the hydrogen atom.

(4) Find an expression for a speed vy, of an electron in the n-th
stationary state.

(5) Find an expression of the energy FE,, of an electron in the n-
th state. Note that, because the potential energy is constant
in this case, we need not add it into the energy F,,.

Ordinarily, the pressure of a gas in a box is explained in
terms of the Newtonian mechanics, whereas the force exerted
on the wall by electrons can be dealt with the quantum theory
as follows. Assume that the wall at x = L is movable. If this wall
moves slowly, we can assume that the electron will stay in the
same stationary state. When the wall at * = L moves to z =
L+ AL (AL is a small distance) and the energy of the electron
in the n-th stationary state changes from FE, to £, + AFE,, the
force F,, with which the electron pushes the wall is given by

_AE,
AL~

F, = (6.20)

(6) Using Eq. (6.20), express F,, in terms of v,, m and L.

Let us consider another way to find stationary states of an
electron. Generally, motion of a particle on the x-axis can be
specified by x(t) and p(t), which represent the time evolution
of the position and the momentum of the particle, respectively.
Then, consider the trajectory of the point (z(t),p(t)) on the
plane in which we take the z-axis in the horizontal direction and
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the p-axis in the vertical direction. Such a plane is called a phase
space and the point at (z(t),p(t)) is called the representative
point of the particle. Motion of a particle in the ordinary space
can be represented by the motion of its representative point
in the phase space. For example, as shown in Fig. 6.7, the
instantaneous change of momentum of an electron from p = —muw
to p = mw on collision with the wall at x = 0 can be represented
by a jump of the representative point (a segment in Fig. 6.7)
from (0, —mw) to (0, mv) in the phase space.

P

Fig. 6.7. The trajectory in the phase space which represents the instantaneous
collision.

111

We revisit the motion of the electron that travels back and
forth between two walls located at x = 0 and L at the constant
speed v.

(7) Draw the closed trajectory of the representative point of the
electron in the phase space.

(8) Calculate the area of the region enclosed by the trajectory
drawn in part (7).

(9) The electron is in the n-th stationary state considered in
part (4). Prove that the area S,, enclosed by the trajectory
of the representative point in the phase space is equal to the
Planck constant multiplied by n.

Let us generalize the result derived in part (9) as follows:
when the trajectory in the phase space forms a closed loop, a
quantum stationary state is acquired from the condition that the
area enclosed by the trajectory is equal to the Planck constant
multiplied by a positive integer. This condition is called the
Bohr-Sommerfeld quantization condition.

The quantization condition of Bohr stated above implies that
a standing wave is formed in hydrogen atom or in the space
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between the two walls and it can be applied to the motion at a
constant speed. On the other hand, the Bohr-Sommerfeld quan-
tization condition can be applied to more generalized situations.

As an example, we consider a harmonic oscillation of an
electron on the z-axis. In this motion, since the de Broglie
wavelength of the electron as well as the momentum varies
with time, it is difficult to consider a standing wave. On the
other hand, the Bohr-Sommerfeld quantization condition can be
directly applied to this motion because the motion of the electron
describes a closed trajectory in the phase space.

(10) The potential energy of this electron at position z is
expressed as %kxz, where k is a positive constant. Find
an expression for the amplitude of the harmonic oscillation
of the electron with the mechanical energy of E.

(11) Write down the expressions for position z(t) and the
momentum p(t), assuming that z(¢) takes the maximum
value at t = 0.

(12) Draw the trajectory of the representative point of the
electron in the phase space.

(13) Apply the Bohr-Sommerfeld quantization condition to the
trajectory drawn in part (12) to find an expression for the
energy F, of the electron in the n-th stationary state.

On the basis of the results derived in Sec. III, let us examine
whether the Thomson model can be applied to calculating
the energy levels of the hydrogen atom. According to the
Thomson model, suppose an electron moves in a sphere in which
positive charges are uniformly distributed. Taking the origin
of coordinates at the center of the charged sphere so that the
the z-, y- and z-axes are perpendicular to each other, then
we can express the potential energy of an electron located at
a point (x,y,z) as %K(azQ + y? + 2%). Here, K is a positive
constant and /x? + y2 + 22 is the distance from the center
of the charged sphere to the electron. This expression of the
potential energy implies that the motion of an electron in the
Thomson model is a superposition of harmonic oscillations along
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the three axes. We represent each of the harmonic oscillations
by a trajectory in each of the phase spaces of (z,ps), (¥,Dy),
and (z,p.), where p,, p, and p, are the - y- and z-components
of the momentum, respectively. Finally, the Bohr-Sommerfeld
quantization condition is applied to each of the three trajectories.

(14) Write down an expression for the energy F of an electron
in terms of p;, py, p., T, y and 2.

(15) Apply the Bohr-Sommerfeld quantization condition to find
the expression for the quantized energy E(ng, n,,n.) of the
electron. Here n,, n, and n. are the quantum numbers of
the motion along the z-, y- and z-axes, respectively.

This result is clearly different from expression for energy
acquired in part (3), which agrees with the experimental results.
Therefore, we find that the Thomson model cannot be applied to
calculating the energy level of the hydrogen atom. On the other
hand, Nagaoka proposed another model of atom (1904) in which
electrons move around a positively charged sphere. The electric
field outside the charged sphere is the same as that produced by
the charge concentrated on the center of the sphere and equiva-
lent to the electric field in an atom of the Bohr model. Hence, the
Nagaoka model leads us to the same result as that in part (3) and
this model describes the spectrum series of the hydrogen atom.

In a case of a heavy nucleus, however, a stationary state more
consistent with experiments is given by considering the heavy
nucleus to be a positive charged sphere with finite size rather
than to be a point charge, as deduced from the quantization
condition based on the relativistic wave equation (the Dirac
equation). This is because electrons are moving at a speed close
to the light one in the innermost shell (K shell) of a heavy
nucleus. Since this relativistic effect reduces the radius of the K
shell, it is necessary to take the size of the nucleus into account.
Recently, the Thomson model revived in the study of electronic
properties of the ‘cluster’, which is an aggregate of metallic
atoms such as sodium (Na). In the theory of metals, we often
employ a model in which the discrete distribution of the positive
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charges on ions is replaced with a continuous medium of positive
charges. Correspondingly, in the theory of the metallic clusters,
the aggregate of positive ions of a cluster is replaced with a
sphere in which positive charges are uniformly distributed. In
addition, we consider that electrons released from the outermost
shell in each atom, can freely move in the sphere.

The sodium cluster is different from a hydrogen atom con-
sidered in Sec. IV in the number of electrons. We assume
that many electrons are uniformly distributed in the sphere
of positive charges to keep electrical neutrality of the cluster.
Suppose we have a cluster of N atoms. Then, the potential
energy of each electron is a sum of the two contributions, the
one from the uniformly distributed N positive charges and the
other from negatively charged (N — 1) electrons. However, their
contributions almost compensate each other, and it can be
considered that the potential energy of the electron is almost
constant in a cluster, which is independent of the size of the
cluster. This means that one can consider a model system of a
sodium cluster to be an electron system confined in a spherical
container of the same size as the cluster.

Let us consider here a periodic motion of an electron within a
spherical container with radius R. Since the potential energy is
constant, the Bohr quantization condition is applicable to the
electron motion, like the free motion of an electron between
walls considered in Sec. II. To quantize the electron motion, it
is necessary to find out periodic motions of the electron. In this
case, the periodic motions may be that in regular polygon-like

Fig. 6.8. A positively charged sphere model of a metallic cluster, in which
positive ions are replaced with positive charges distributed uniformly in a sphere.
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orbits. Especially in the sodium cluster, equilateral triangle
orbits and square orbits are considered to be important.

(16) Find an expression for the lengths l3 of one lap of the
equilateral triangle and I4 of one lap of the square in terms
of the radius of the sphere R.

(17) Find an expression for the speed u, of an electron on an
equilateral triangle orbit, by using the condition that the
length of the orbit is its wavelength multiplied by a positive
integer n. By using the same condition, find an expression
for the speed w,, on the square orbit.

(the 2nd Challenge)
Solution

The purpose of this problem is to understand the importance of
quantum mechanics for describing the states of electrons. Without
solving the Schrodinger equation, wave properties of matter, the basic
idea of quantum mechanics, can be considered.

(1) The circumference of the circle with radius r,, is 27r,. Hence,
the Bohr quantization condition is

27Ty, = Ny,

(2) Assuming that the electron moves at a speed v, around the
nucleus in a circular orbit, the equation of motion is

2 2
v i e
m— = ko—.

n ra

Hence, the momentum of the electron can be calculated as
h nh

mv, = — =
Ao 271y,

where the result in part (1) has been substituted for A.
Eliminate v,, from two equations above, we obtain

(Y
" mkge2 \ 21 )



(3)
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The total energy of the electron is the sum of the kinetic energy

%mv% and the Coulomb potential —kog. From the equation of
motion considered in part (2), the kinetic energy is written as

1,2 _ koe? :
5mv;, = 45— Hence, we obtain

1 e2
En = 5777/07% — kga
N k062
N 2ry,
~ m(koe®)? (27 2
a 2 h n?’

where the result of part (2) has used to derive the final line.
The quantization condition (which is a condition of standing
wave between two walls) is

2L = n\,.

On the other hand, the momentum of the electron is
i

N

Hence, the speed of the electron is

_h nh
v"_m)\n_QmL'

muv, =

In this case, the energy involves only the kinetic energy. Hence,

2 2,2
B, - mv, _n .
2 8mL

Differentiating — F,, with respect to L, we have
dE, n2h?
dL  4mL3’
Then, the result of part (4) leads to

F, =

F,L = mu?

n:
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(7) As shown in Fig. 6.9, the trajectory is a rectangular whose
apexes are (0,muvy,), (L,mv,), (L, —muv,), (0, —muv,), and the
direction is clockwise.

p
A

mu,, >
A

0 > X
L
4
—-mu, <
Fig. 6.9.

(8) The area of the region enclosed with the rectangular shown in
Fig. 6.9 is

L - 2muv, = 2muv,L.

(9) Sn = 2mu, L
= nh,
where we insert the result of part (4) to derive the rightmost

hand side.
(10) Since the mechanical energy is

1 1
E = §mv2 + 5]4:;32.

The position x has the maximum value zy,,x when v = 0.
Hence, we have

T

Tmax = ?
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(11) The angular frequency of this harmonic oscillator is w = %
When z(t) becomes maximum at t = 0, z(t) = 4/ 25 cos(wt).
Differentiating x(t) with respect to ¢, we obtain an expression
for v(t). Hence the momentum is

dx(t)

dt

2F
= —muw/ - sin(wt) = —V2m&E sin(wt).

(12) As shown in Fig. 6.10, the trajectory is an elliptic orbit where
the amplitude of the momentum p is v2mFE and that of the

position x is % The direction of the trajectory is clockwise.

p(t) =mu(t) =m

p

4

e [2E
k k
» X
\v\o/

Fig. 6.10.

»

(13) The area of the ellipse described in part (12) is

s=mvomB- |2 ~om 7 (-22)

Hence, the Bohr-Sommerfeld quantization condition can be

written as
Im
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Then the n-th energy value is
where i = 2.

E, :nﬂwﬁ = nhw,
2V m
2r

For large n, this is an asymptotic expression for the exact
solution of energy values of a harmonic oscillator, which is given
by the quantum mechanics:

1
E, = — | hw.
<n+2>

(14) Since the motions in three directions are independent of each
other, the total energy is given by the sum of their energies:

2 2 2 2 2 2

Py |k Py | ky p2 | kz

= (X 2 Py M Pz | B~
<2m+ 2>+<2m+2>+<2m+2

1 k
= —P+pi+pd)+ (@ +y° +27).
2m 2

(15) The energy of the z component is "32“’, where n, is zero

or a positive integer. Similarly, the energies of the y and
z components are ngﬁw and "gfr“’, respectively. So the total

energy is

w
E(ng,ny,n;) = %(7% +ny +n;).

(16) Since AB = 2 - OA cos(7/6) = v/3R in Fig. 6.11(a), we obtain
I3 = 3AB = 3V3R ~ 5.2R.
From Fig. 6.11(b), we have

I, = 4AB = 4V2R ~ 5.6R.
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Fig. 6.11.

(17) The wavelength of the standing wave made up in the inscribed
equilateral triangle is given by l3 = nAs,, and the speed of
electrons moving along the inscribed triangle is as follows:

h - nh
mAsn  3vV3mR

Up =

Similarly, the speed of electrons moving along the inscribed
square is as follows:

_nh
4V/2mR’

Wn,

Problem 6.4. Fate of the Sun

Discovery of a strange star, white dwarf

The heliocentric theory was widely accepted in the 17th century.
If this theory is correct, the earth location in space should sig-
nificantly change in half a year since the earth moves around the
sun in one year. Then, we should expect a slight shift of the fixed-
star position accompanied by the earth motion, which is called the
parallax. However, the parallax was not detected until 19th century
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when Frederick Bessel performed precise position measurements of
nearby stars in order to detect it. Since nearby stars are expected to
be bright, he selected many bright stars and detected the parallax
for the first time in 1838. Among them, he measured the precise
location of Sirius, the brightest star in the constellation of Canis
Major, and detected its parallax. He also reported that Sirius showed
extra-motion other than the parallax. Based on its extra-motion,
they discovered that Sirius is in a binary star system, although they
could not see the companion star (1844). Using the state-of-the-art
refractor in 1862, Alvan Clark detected a faint star very close to
Sirius. He found that two stars showed similar temperatures, but
that the bright star (Sirius A) was ten times brighter than the faint
star (Sirius B). This fact shows that the surface area of Sirius A is 10*
times larger than that of Sirius B, which indicates that the radius of
Sirius A is 100 times bigger than that of Sirius B. Moreover, the result
of the observation of their orbits indicated that the two stars would
have similar masses. Based on the astrophysical study, it was known
for Sirius A to have a density about 1 g/cm? that is similar to that of
the sun, whereas Sirius B should have a density about 1 x 10° g/cm3
that is much denser than any matter known at that time. We will
learn that Sirius B is a white dwarf. With regard to the density,
the gold (Au) is 19.32 g/cm? and even the osmium (Os), the densest
matter on the earth, is only 22.57 g/cm?. Arthur Eddington, a famous
astronomer in UK, said (1926) ‘Apart from the incredibility of the
result, there was no particular reason to view the calculation with
suspicion’. Let us learn how to explain this incredible result.

Particle motion in a very small scale — Heisenberg
uncertainty principle

In Newtonian mechanics, we can specify a state of any particle,
like an electron, at some instant by a set of its position and
velocity. In the following, we employ particle momentum instead
of its velocity. Then, we can specify a state of any particle at a
given time by its position r and its momentum p. For simplicity,
we consider the situation of one-dimensional configuration along
the z-axis, then the particle state can be expressed by a set of
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position x and momentum p. However, according to the quantum
mechanics that can treat the very small scale particle dynamics,
we cannot simultaneously determine both x and p precisely. For
example, you can only determine the particle state such that the
position is between x and z+ Az and that the momentum is between
p and p+ Ap. Here Az and Ap are uncertainties of the position and
momentum of the particle. The product of Az and Ap cannot be
smaller than a certain physical constant. In other words, if the value
of Az you measure is very small, the value of Ap measured cannot
be small. Inversely, if the value of Ap you measure is very small, the
value of Az measured cannot similarly be small either. This is not
due to a technological problem but due to the principle of physics,
which is called the Heisenberg uncertainty principle.

A new type of coordinate, phase space

Here, we introduce the concept of phase space that describes
the particle state. First of all, we consider the one-dimensional case,
where the phase space is described by a plane with the horizontal and
vertical axes corresponding to the position x and the momentum p,
respectively. Since in Newtonian mechanics we can simultaneously
determine the particle position and its momentum at a given time,
the particle state at this moment corresponds to a point in the
phase space. However, in quantum mechanics, due to the Heisenberg
uncertainty principle, any particle state does not correspond to a
point but to some volume (area) in the phase space that is called
a phase volume. Let us consider the case of electron, proton and
neutron. These particles are called fermions. If the uncertainties of
position and momentum are Ax and Ap, this area, AxAp, is equal
to % where h is the Planck constant. According to the quantum
mechanics, the phase volumes of the same kind of fermions cannot
overlap one another. In other words, when there are N particles of the
same kind of fermion (for example, electron), each particle occupies
a phase volume %, thereby N particles as a whole occupy an area
of N % in the phase space. Therefore, if there are a large number of
electrons (or neutrons or protons), they will occupy a large volume of
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the phase space. Conversely, a phase volume, AV, can accept them

up to the number ﬁ—/‘g.

Degenerate state of electrons

When we employ momentum p instead of velocity v, we should
note that the kinetic energy of the particle whose mass is m is
expressed by %. Consider a case that there are N electrons in
the position range —R < z < R in the one-dimensional space.
We assume that N is as large as Avogadro’s number. When
the electron temperature is high, electrons are moving very fast,
whence their momenta become large. The electrons sparsely scatter
in the phase space as shown in Fig. 6.12(a). However, when the
electrons are cooled down, their momenta reduce. We should note
that a phase volume which can be occupied by a single electron
is constant, independent of the temperature. Furthermore, phase
volumes of electrons do not overlap one another in the phase space.
Therefore, to make the total momentum (whence the kinetic energy)
small at the zero temperature, the electrons occupy a certain range

—DPF

(a) (b)

Fig. 6.12. Schematic views of the phase space in one-dimension. In this case, the
phase space is described in a plane where horizontal and vertical axes correspond
to the position, x, and the momentum, p. The phase volume occupied by a single
particle has a fixed area while its shape is indefinite. In this figure, there are
5 kinds of shape for simplicity. (a) A non-degenerate state at high temperature.
(b) A degenerate state at low temperature.
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of the phase space, say from —pp to pp, or equivalently 0 < |p| < pp,
where pp is called the Fermi momentum.

When the electrons nearly fill the phase space area of —pp <
p < pr, we refer to this state as the degenerate state of electrons.
This state is shown in Fig. 6.12(b). When the electrons are in a
degenerate state, we will find that the sum of the kinetic energy of
all the electrons, Uy, can be expressed in terms of R and N. Answer
the following questions.

(1) When N electrons fill the phase space so as to make the total
momentum of electrons small, they are in a degenerate state. The
electrons will fill the range of the phase space given by —R <
z < Rand —pr < p < pp. Show that the maximum momentum,
PF, is given by

hN

= (6.21)

pr

(2) The kinetic energy of an electron does not depend on its position
z, but on its momentum p. Let us consider electrons in the
momentum range between p and p + Ap and in the position
range —R < x < R where Ap is sufficiently small, such that
these electrons can be regarded as having an equal value of
kinetic energy, 2})757 where m, is the electron mass. Calculate
the sum of the kinetic energy of the electrons in this range,
AUy.

(3) The sum of the kinetic energy of all the electrons can be expressed
as Ug = > AUy,. This sum can be performed by an integration
over the momentum range —pr < p < pr. Express Uy in terms
of R and N by taking into account Eq. (6.21).

Degenerate pressure of electrons

Due to the Heisenberg uncertainty principle, the entire kinetic
energy of the electrons, Uy, cannot be zero even if the temperature is
very low. In this case, if we push the system by an external force to
reduce R, we will find Uy to be increased. The increase of Uy is the
work done by the external force, which means that there is a pressure,
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P = —%. This pressure is called the degenerate pressure. If there
are protons which are also degenerate, then they can also produce
a degenerate pressure. It should be noted that different kinds of
particles like a group of electrons and that of protons can overlap with
each other in the phase space. Therefore, the degenerate pressure is
determined for each kind of particle. It is separately calculated for
each species of particle.

(4) There are an equal number of electrons and protons in a
volume. Both electrons and protons are in degenerate states. The
degenerate pressure of electrons is higher than that of protons.
How high is it?

Relativistic and non-relativistic kinetic energy

When the speed of a particle approaches that of light in vacuum,
¢, we have to include the relativistic effect. When the speed of the
particle is much smaller than ¢, we say it is in a non-relativistic
situation. According to Einstein’s relativity theory, the particle
energy, F, is expressed as E = \/(mc?)? + (pc)? where m and p are
the particle mass and momentum, respectively. The kinetic energy is
defined as the difference between the particle energy with momentum
p and that with p = 0 as follows:

kinetic energy = E — mc? = v/(mc2)2 + (pc)? — mc?.

We should note that the speed of particle cannot exceed that of
light in vacuum, c¢. When the speed of the particle is much smaller
than ¢, ie., pc < mc?, the situation is non-relativistic. In the
other extreme limit, i.e., pc > mc?, we say the situation is ultra-
relativistic.

(5) Show that the kinetic energy of a particle is approximated by

2
I~ in the non-relativistic case and by pc in the ultra-relativistic

case. You can use the approximation formula 1+ x =1+ %a:
for |x| < 1. In the non-relativistic case, we know p = mv, where
v is the speed of the particle. Then, the kinetic energy can be

expressed as %va.
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Degenerate pressure in the three-dimensional space

Based on the case of the one-dimensional space, i.e., parts (1)
through (3), let us consider the case of the three-dimensional space.
Since position r = (z,y,2) and momentum p = (pg,py,p-) are
three-dimensional vectors, the corresponding phase space becomes
six-dimensional. A single electron will occupy a small volume of
position, AzAyAz, and a small volume of momentum, Ap, Ap,Ap..

Therefore, a single electron will occupy AxzAyAzAp,Ap,Ap., which

h3
2
phase space. When N electrons are packed in a three dimensional

sphere of radius R in the degenerate state, we can calculate the total
kinetic energy of the electrons, Uy, in terms of N and R, as shown
below.

In the three-dimensional space, we know that the ratio of the
sphere volume V to the cube of the radius R? is %’r. Therefore, we
will introduce a constant k that simplifies the calculation.

is equal to a phase space volume of in the three-dimensional

A\ 2
k=2 x <§> : definition of k,

k ~ 3.274: approximate value.

(6) Let us fill the phase space with IV electrons by making the total
electron momentum as small as possible so that they are in
a degenerate state. When the electrons are in the complete
degenerate state, they fill the sphere of radius R in the position
space and the sphere of radius pp in the momentum space.
Then, find the maximum momentum of electrons, pp, as a
function of NV and R.

(7) Electron’s kinetic energy does not depend on its position r
but on the magnitude of its momentum p. Let us consider
the electrons in the phase space, such that the position r is
in the range r < R and the momentum p is between p and
p+ Ap. We assume that Ap is sufficiently small, such that each
electron in this phase space can be regarded as having an equal
magnitude of the kinetic energy. We should note that the phase
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space volume is
4 3
§R347Tp2Ap = §k3R3p2Ap.

You can calculate the sum of the kinetic energy, AUy, for
all the electrons within this phase volume by referring to part
(5). Calculate AUy in both of the non-relativistic and ultra-
relativistic cases.

(8) Then, you can calculate the total kinetic energy, Uy, by
summing up the kinetic energy over the various values of p.
You can carry out the summation over the momentum by an
integration over the momentum from 0 to pr. Employing the
results of parts (6) and (7), you obtain Uy as a function of N
and R in the form as shown below. Calculate the powers a and
b of N and R, respectively, in both of the non-relativistic and
ultra-relativistic cases.

3 h?

non-relativistic case: Uy = —— — N®R?
CT 10k2 me ’

ultra-relativistic case: Uy = %th aRb.

Fate of the sun

The sun is a typical star in the universe. It is a sphere with radius
7% 10® m. The central temperature reaches 1.4 x 10" K. In the center
of the sun hydrogen fusion continuously occurs. Solar gravity pulls
matter towards the center to crash, against the pressure due to the
high temperature pushing matter away. The gravity and the pressure
have been in well balance over the last 5 billion years. The hydrogen
fusion is a process to convert 4 hydrogen nuclei (protons) to 1 helium
nucleus. A huge amount of energy is generated through this process to
keep the solar center at high temperature. In this case, the hydrogen
in center of the sun will totally be converted to helium in 10 billion
years after its birth. After that we cannot expect any significant
energy generation in its center. It cools down, which implies reduction
of the pressure. Eventually the gravity overcomes the pressure, and
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the sun contracts. Does it contract forever? If something could stop
the contraction, what is it?

Gravitational energy of a star

Let us consider the process that a star with uniform density
formed by integrating a large number of small pieces of matter. We
consider a stellar matter of radius r and mass m(r), then how much
is the potential energy of a small mass Am when it is located at a
distance z(x > r) away from the center of the star? This energy is
called the gravitational energy. The gravity F acting on Am is
expressed as

_ Gm(r)Am

F
72

Y

where G is the gravitational constant. We assume that the gravita-
tional energy is zero at infinity (z = 00). We move Am from infinity
to the stellar surface (z = r), then the gravitational energy, AUy,
which is the work done by an external force against the gravity F,
can be calculated by integrating F' over x as follows:

Gm(r)Am

r

,
AU, = / Fdx = —
oo
This is the gravitational energy of Am at the distance r from
the center of the star. When the mass density is uniform, we can
calculate the gravitational energy of a star with mass M = m(R)
and radius R, as shown below.

(9) Suppose Ar is a very small value. The gravitational energy of
mass, Am, is given by the above equation, where Am is the
mass in the volume of the star between spherical surfaces of
radii 7 and r + Ar. Noting that this volume is given by 4mr?Ar,
calculate the gravitational energy of this volume, AU,, and
express the result in terms of G, M, R, r and Ar.

(10) You can calculate the total gravitational energy, U,, by sum-
ming up AU, over r from 0 to R. Find U, by using the
integration and express the result in terms of G, M and R.
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Evolution of stars

Let us consider a star (radius R, mass M) whose hydrogen has
been completely converted to the helium through nuclear fusion.
The helium atom consists of the neutron, the proton and the
electron with the number ratio of 1 : 1 : 1, respectively. Since the
neutron and proton have similar masses, they are called the nucleon.
The nucleon is much heavier than the electron, which indicates that
the atomic mass is almost determined by the number of nucleons.
On the contrary, the degenerate pressure is almost determined by
the number of electrons, since the electronic degenerate pressure is
much higher than that of the nucleon, as seen in part (4). If we denote
the ratio of the nucleon number to the electron number by y, we find
y = 2 for the helium. If the total number of electrons in the star is
N, the star mass, M, can be expressed as M = ymyN where my is
the nucleon mass. Using this relation, we can rewrite the expression
for U, (derived in part (8)) with M instead of N.

When the star contracts due to gravity, the radius R also reduces.
The total energy, U, of the star is the sum of the gravitational
energy U, derived in part (10) and the kinetic energy U, derived
in part (8). We should note that U, is negative and Uy is positive.
If the total energy, U = U, + Uy, has a minimum value at a certain
radius R, the contracting star will reach this minimum U value,
which is in a stable state. The star of this state is called a white
dwarf.

(11) Find the radius and the density of a white dwarf with assump-
tions that the white dwarf has a uniform mass density and
the electrons are in the non-relativistic region. In particular,
compute numerically the radius and the density for the case
when the sun becomes such a white dwarf.

(12) When a star more massive than the sun contracts to form a
white dwarf, its radius becomes smaller and its density becomes
higher than that of the sun. Consequently, the momentum of
the degenerate electrons becomes large. When all the electrons
are in the ultra-relativistic region, show that the total energy
U is proportional to R~!. Investigate the stability of this star,
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and then explain why a star which is heavier than some critical
value does not form a white dwarf but collapses.

(13) When the density of a star becomes high, the kinetic energy
of the electrons is in the ultra-relativistic case. In this case,
as we have considered in part (12), a star whose mass is
exceeding some critical value will collapse since the degenerate
pressure of the electrons can no longer sustain the gravity. This
critical value is called the Chandrasekhar mass, named after
its discoverer (Subrahmanyan Chandrasekhar). Calculate the
Chandrasekhar mass. How many times is it as compared with
the solar mass?

Chandrasekhar mass

In the actual white dwarf, the value of y is larger than 2 and the
density is not uniform. Furthermore, since not all the electrons are in
the ultra-relativistic region, we should note that the precise value of
the Chandrasekhar mass is slightly smaller than that calculated here.
When the electrons in a star less massive than the Chandrasekhar
mass are in the ultra-relativistic region due to their high density, the
star will expand, reducing the density. Then, the electrons turn into
the non-relativistic region. The star will be stable as a white dwarf
calculated in part (11). On the contrary, in a star more massive than
the Chandrasekhar mass, the electronic degenerate pressure can no
longer sustain the gravity when the star ceases generating energy
through fusion reaction. Consequently, the star collapses further and
its density increases. Then, a proton will capture an electron to form
a neutron. In this way, all the protons turn to neutrons. This is a
birth of a neutron star.

(14) There is a neutron star whose mass is just larger than the
Chandrasekhar mass and all the neutrons are in the non-
relativistic region. Referring to the argument of the formation
of a white dwarf, estimate the radius of the neutron star. A star
whose mass is just smaller than the Chandrasekhar mass will
be a white dwarf. How many times is the radius of the white
dwarf as compared with that of the neutron star?
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Black hole

When a star like the sun terminates its fusion reaction, there is no
heat production inside, resulting in the contraction of the star by the
gravity. If the star is as massive as the sun, the electronic degenerate
pressure will balance with the gravity. It will become a white dwarf. If
the star is more massive than the Chandrasekhar mass, the electronic
degenerate pressure cannot sustain the gravity. Then, an electron
combines with a proton, forming a neutron. The star contains only
the neutrons. Since the neutrons also produce a degenerate pressure,
its pressure can support the gravity. It becomes a neutron star.
Similarly, if the star is more massive than some critical mass, the
neutron degenerate pressure can no longer sustain the gravity. If this
happens, the star collapses and swallows up everything, resulting in
a state called the black hole.

Gravitational constant: G = 6.67 x 10~''Nm? /kg?
Planck constant: h = 6.63 x 1073* Js

light speed: ¢ = 3.00 x 10%m/s

electron mass: m, = 9.11 x 103! kg

nucleon mass: myg = 1.67 x 1072" kg = 1830m.
Solar mass: My, = 1.99 x 10%° kg

Solar radius: Rgyn = 6.96 % 108 m

(the 2nd Challenge)

Solution

(1) The N electrons occupy the area of Nh/2 in the phase space.

h h N  hN

(2) The sum of the kinetic energy is given by

2 2
AU, = Ap2R p°  2Rp Ap.

h/2 2m.  hm,
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(3) The entire kinetic energy is given by using Eq. (6.21) as follows:

sz 2R 2 2R 2p%,
= AU, = = dp = r
Ua = Z Ua = Z hm6 hm /_pr p hm, 3
4R (hN\® = R2N?
- 3hm. \8R/)  384m.R?

(4) The degenerate pressure P of particles is given by

dUyg h?N3
dR ~ 192mR3’
where m and N are the particle mass and number of particle.

If the numbers of particles with different masses are the same,
the degenerate pressure of less massive particles is higher

P=-

than that of more massive particles. Therefore, we find that
the degenerate pressure that supports the matter against the
gravity is that of electrons. The degenerate pressure of electrons
is 1830 times larger than that of protons.

(5) In the non-relativistic case,

2
Vm2et + p2c —mc® = mc? ( 1+ -2 1)

m2c2

2 2
2 p p
~mce ([l+—=—-1)=—.
< 2m2c? ) 2m
In the ultra-relativistic case,

P22
Vm2ct + p2c2 —me? = ~ pc.
vm2et + p?c® + me?

(6) The maximum momentum of electrons is obtained as follows:

d7ps dmpy 47rR3 h3

5N = kppR® = h*N,
5 3 = k'ppR

_h s _ b (9N 1/3
“rr= RN = 5g (471'2) '
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(7) In the non-relativistic case, we obtain the result in the way

similar to part (2).

47Tp2Ap4?TrR3 p2 B %k3R3p2Ap p2

AU, = _
Ua K32 2m. h3/2  2m.
3k3 3,.4 3,4
= U, P AP 3h3 R Ap.

In the ultra-relativistic case, we obtain in the similar way,

47rp2Ap4%R3 %k3R3p2Ap
AUa~ =m0

3k €. 33 327r €. 33

% ——R’p°Ap e —— R’p°Ap.

(8) In the non-relativistic case, the total kinetic energy U, is

given by

33 54
Ud:ZAUd:Z2h3meRp Ap

3k pr 3k
= R’ / pldp = R’pjy
0

2h3m, 10h3me,
3k3 h 3 m
— R3 _N1/3 _ 5/3R—
10h3m, <k‘R ~ 10k2 m,
5
— 2 p=_9
a &7 J—

In the ultra-relativistic case, Uy is given by
3k3¢ 4 4
b= Y av = Y W,

(6.22)
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3 4
_ 3 ps <£N1/3> - %th‘V?’R‘l. (6.23)

T 443 kR

4
Ca=-, b=-L
“=3

(9) Noting that the density p inside the star is written as p = %,

we can calculate the gravitational energy AU, as follows:

A3
_GmAm _G%ZMTQAT,O _ —167T2Gp27'4A7’

AU, =
Us r r 3
1672G [ 3M \* , 3GM? ,
=-—3 <47rR3> reAr = — 7 rrAr.

(10) The entire gravitational energy of the star, U,, is given as
follows:

Ug=> AU, = —%Z#Ar

3G M? /R A 3 GM?
=— redr = —— . 6.24
RS 5 R (6.24)

(11) Let us calculate the minimum of the entire energy of a star.
Using Egs. (6.22) and (6.24), we can express U as a function
of R. Next, we differentiate U with respect to R and set its
derivative equal to zero. Then, we have

w4
dR  dR

_d(sGM* 3 WM 58 0
"~ dR 5R 10k2 m. \ymu RrR2)

C3GM, 3 W (M 5/3
’ 5 ~ 5k2me \ymu '

(Ug + Ud)
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From this equation, we obtain R and p at the minimum
energy of the star as follows:

h2

R =
k2Gm.(ymp)>/3

M~/3, (6.25)

3M 3 KSG3m3 (ympy)®

— — M?.
ATR3  Ax hb

p

Let us consider the case of the sun whose mass is given by
Mg The radius will be R = 7.189 x 10°m and the density
will be p = 1.278 x 10% kg/m?®.

When a star of the solar mass collapses to a white dwarf
and the degenerate pressure of the electrons sustains the
gravity, its density is so high that the mass of a sugar cube
size will become as large as one ton. Its radius will be similar

to that of the earth. The larger the mass is, the smaller the size
becomes.

(12) Using Egs. (6.23) and (6.24), we can express the entire energy
U as follows:

M? M \Y3
U=U,+Us= —3G5 R+ %hc (—) R

3GM? 3 MY,
= - ~he [ — -1 2
{ 5 —|-4th (y H) R (6.26)

We should note that U is proportional to R~!. Therefore,
if the coefficient of R™! is positive, U decreases as R increases.
Then the star expands. As a result, the density reduces, and the
electrons in the star turns from the relativistic region to the non-
relativistic region. And so, the star forms a white dwarf which
is stable. If the coefficient of R™! is negative, U decreases as R

decreases. The star collapses since the gravity can no longer be
sustained.
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(13) 3GM3, 3 e (M 4/3
5 Ak Yympg
2/3 S5he

ch T 4k(ymH)4/3G’

o 5 32 he 3/2
b\ 4k (ymp)? \ G

6.922
y2

Mgun =~ 1.73 Mgyn.

In the actual cases, there are some conditions that are
different from this simple assumption. For instance, not all
the electrons are in the ultra-relativistic region, and there
are materials other than helium etc. With these conditions
included, the coefficient of 6.92 turns out to be 5.86, resulting
in the Chandrasekhar mass to be 1.4 Mg,,.

(14) In part (11), we obtained the size of a star in which the degen-
erate pressure of the electrons sustains the gravity. Similarly,
we can calculate the size of a star, in which the degenerate
pressure of the neutrons sustains the gravity, by substituting
y— 1, me — mp, M — My, in Eq. (6.25).

h2
R = M3
kE2Gme(ymy)>/3
h2 _
= —— M = 1.037 x 10" m,
k2Gmy

Here we employed My, = 1.73 Mg,,. This value coincides well
with the value when we fill the sphere of the star with neutrons.
In the actual condition, relativistic effects play an important
role, which we do not include here.
We can calculate the ratio of the radius of a white dwarf
whose mass is just below M, to that of a neutron star whose
mass is just above Mg,. Setting their mass equal to each other,
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we have

h? -1/3
Radius of white dwarf WM /

Radius of neutron star _h -1/
k2Gm;/?

mp/me
y5/3
= 577.4,

where we set y = 2. The radius of the white dwarf is 577 times
larger than that of the neutron star. [ |



PART 11

Experiment
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Chapter 7

How to Measure and Analyze Data

7.1. Some Hints for Experiments

In this section, we list some useful hints for carrying out measure-
ments quickly and effectively in experimental competitions within
time limit, such as in International Physics Olympiad (IPhO) or
domestic competitions. Of course, these hints are also useful for
experiments in classes at high schools as well as in labs at universities.

(1) Imagine the whole procedure of measurements before
making the measurements.

In some of experimental competitions, such as in IPhO, the mea-
surement parameters are not always given in the text. For example,
you may not know in advance how quickly the phenomenon in
question will occur or how quickly you should measure it. You
may not know in advance how small a voltage step you should use
in measurements with an electric circuit. You may not know how
many millimeters you should shift a mirror in measurements with an
optical interferometer. In such experimental competitions, you are
required to determine those parameters by yourself prior to making
the measurements. Some students will try to do the measurements
as precisely as possible by setting the parameters increments (time,
voltage, or distance, etc.) very small from the beginning, which will,
however, result in waste of time in many cases. First, you should

quickly change the parameter across the whole range required, and

observe what happens roughly and qualitatively. Then, by consider-

ing the time you have in the competition, you should determine how

273



274 Physics Olympiad: Basic to Advanced Exercises

finely you can measure the phenomenon in more detail. In many
cases, the phenomenon in question occurs within a limited range
of the parameter. If you find such a range with the quick first
observation, then, you can concentrate on measuring more pre-
cisely only in that smaller range. Outside of such important ranges,
you can do the measurement in a rougher manner. This kind of clever
approach saves a lot of time, and can help you avoid inconsistent

measurements. Furthermore, if, for example, the situation under
measurement is symmetric with respect to the origin along the
xr-axis, you can do the measurement precisely on just the positive
x side. It will then be enough to make a rough measurement on the
other to confirm the symmetry. This is a very smart approach. If
you find (theoretically) that the phenomenon under investigation in
an electric circuit occurs in the same way with both positive and
negative voltages, you can omit the measurement at one side of the
voltage range.

(2) You do not need to conduct each measurement very
precisely

For example, to measure the length of an object with a ruler, some
students will try to use a precision of 1/10 of the minimum division
of the scale. But it will waste time. You do not need to be so
careful, because the general rule in IPhO is that the error in each
measurement should be 1/2 of the minimum division of the scale.
Therefore, for a measurement with a ruler having a minimum
division of 1 mm, the measurement result may be 21.3 £ 0.5 mm, in

which 0.3 mm is within the allowable error tolerance and is not so
important. The ruler will not always be made with a precision of
1/10 of the minimum division, so you do not need to spend much
time determining the value to the first decimal place in this case.
On the other hand, it is also a general rule in IPhO that the
measurement error with a digital instrument is one step of the last
digit. For example, if measuring a voltage with a digital multi-meter,
when the value on the meter shows 21.3V, the measurement result
is 21.3+0.1V. Be sure that the measurement error is 1/2 of the
minimum division in the case of an analog scale (such as a ruler or a
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stem thermometer), while it is one unit of the last digit of a digital-
scale measurement (such as a digital platform scale or a digital

multi-meter).

The value shown on the instrument is sometimes unstable; that
is, the last digit is always changing. The value may be around 21.3V,
but the first decimal digit fluctuates between 1 and 5. In this case,
the range of the fluctuation should be indicated as the measurement
error. So the measurement result in this case is 21.3 £ 0.2 V. Similarly,
when the indicator in an analog meter fluctuates in a specific range,
you can put the fluctuation extremes as the measurement error. Of
course, you should first try your best to suppress the instability in the
measurements. But if the fluctuation cannot be eliminated in spite of
such efforts, you can regard it as noise and mark it as measurement
error. If the amount of fluctuation is acceptable, you should not
concentrate on revising the measurements in trying to reduce the
fluctuation for many minutes.

(3) Record the data

Let us consider the measurements of an electric circuit in which the
current flowing in the circuit is measured as a function of the voltage
of the power supply. Both of the current and voltage are measured
with digital multi-meters. The data may be written down in the
way shown in Fig. 7.1, as a list of the voltage values with corre-
sponding current values. It is important first to record the physical
quantities with their units at the top in the list (You may have
some points deducted if you do not write down the units on

the answer sheet). In this case, you do not need to make the
measurements in the order of increasing voltage from the smallest
values with some fixed step. As mentioned before, it is better to first
roughly scan the required range with a large voltage step and measure
the corresponding change in current roughly. Then, if needed, you
can perform finer measurements only in the important voltage range
where the change in current is rapid or where the phenomenon in
question occurs. While, in this case, the data table is not in the
order of ascending voltage, it will not be a problem points-wise.
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Voltage (V) Current (mA)
0.50x0.01 5.20+0.01
1.00£0.01 9.80
1.50 15.1£0.1
Measurement 2.00 21.3 \
range (sensitivity) L25+0.1 303 Digit number
changed from 2-V changed
to 20-V range. 3.0 12.5
3.5 53.0
4.0 62.5
Fmely me!asul“ed F99 9245
m an 1mportant
range. 2.4 28.5
& 2.6 32.5
< 2.8 38.5
2.1 22.5
2.3 25.7
T 1.8 18.5

Fig. 7.1. Example of a list of measurement data.

When you change the measurement range of the digital multi-

meter, the unit may change from A to mA and/or the smallest
digit may change in the display of the meter. You should be careful
regarding such changes, i.e., recording the change in measurement
error as shown in Fig. 7.1.

If possible, along with recording the measurement data in the
list, it is recommended that you plot the data in a graph during the
measurement. As shown in Fig. 7.2, the graph based on the data in
Fig. 7.1, the horizontal axis is for the pre-set parameter (voltage in
this case), and the vertical axis is the measurement result (current
in this case). By drawing the graph, you can easily determine the
specific range of the parameter where significant change occurs. In
the example shown in Fig. 7.2, we can see that the gradient changes
around 2.2V. Therefore, a more precise measurement needs to be
made only around this voltage value. In order to draw the graph,
you need to find the maximum (and minimum) values on both axes.
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Fig. 7.2. A graph of data in Fig. 7.1

For this, making a first quick measurement across the whole range
of the parameter as mentioned before is very useful.

Of course, during experiments in which you cannot make such
a preliminary quick measurement, you should change the preset
parameter from the smallest value with a small step and perform
the measurements steadily. At the experimental competition in
IPhO2008 Vietnam, where the contestants were required to measure
the current in an electric circuit every 30 seconds, they did not have
enough time to plot the data in a graph during the measurement;
they could draw the graph only after all of the measurements were
completed.

You will need to take actions that suit the occasion.

(4) Measurements with a vernier

Some instruments with a vernier, such as a slide caliper and a
protractor, are sometimes used in IPhO competitions. Here the
fundamentals of measurement techniques with a vernier are explained
using a slide caliper in the example (Fig. 7.3(a)).

The vernier has a scale which divides the length of nine divisions
on the main scale into ten divisions. In other words, the minimum
division a on the main scale is 1 mm and that on the vernier b is
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Fig. 7.3. Caliper. (a) Names of parts. (b) Example of a measurement.

0.9mm: 9a = 10b. The difference in division between the main scale
and the vernier is 0.1 mm, which is now the minimum division in the
measurement. Therefore, the measurement error is +0.05 mm.

Figure 7.3(b) shows an example measurement. First you can do
a rough measurement on the main scale at the position of origin
on the vernier, indicating somewhere between 7mm and 8 mm in
this case. Next, look for the point where the lines on the main scale
and on the vernier line up, and read the value at this point on the
vernier scale. It is 6 for this example. As a result, the measurement
value is 7.6 mm. Because, as mentioned above, the minimum division
of the measurement using this caliper is 0.1 mm, the measurement
error is 0.05mm. Then, finally we get the measurement result of
7.60 & 0.05 mm. This error is one order of magnitude smaller than
that of a measurement with a simple ruler with a minimum division
of 1 mm.

Exercise 7.1. Another type of caliper as shown in Fig. 7.4(a) is also
widely used. The 39 mm in the main scale is divided into 20 divisions
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on the vernier. An example of measurement is shown in Fig. 7.4(b).
Write down the measurement result with error for this case.

Answer The position at the origin on the vernier is located between
27mm and 28 mm on the main scale. The position where the scale
lines on the main scale and the vernier coincide is 6.5 on the vernier.
Therefore, the measured value is 27.65 mm. Since the minimum
division on the vernier is 39/20 = 1.95 mm, which differs by 0.05 mm
from two divisions on the main scale (=2 mm), the minimum division
in the measurement is 0.05 mm. Therefore, the measurement error is
one half of the minimum division, or 0.025 mm (0.03 mm by rounding
up). Finally, the measurement result is 27.65 + 0.03 mm. (Do not
record the result as 27.65 + 0.025 mm: the third decimal place of
the error value has no meaning because the second decimal place
of the measured value already contains an error. The error should
be written down with one digit only, as mentioned in the next
section.)

A protractor used in an optical spectrometer has a vernier
(similar to the experimental competition at IPhO2007 Iran). In this



280 Physics Olympiad: Basic to Advanced Exercises

case, the minimum division on the main scale is 0.5°(= 30'), while the
vernier equally divides 29’ on the main scale into 30 divisions. Then
the minimum division in the measurement is 1/, and its measurement
error is half of that, i.e., +0.5'.

7.2. Measurement Errors and Significant Figures

Since all results obtained in experiments contain some uncertainty
(error), the measured result has no meaning if it is shown without
the error component. Therefore, the concept of significant figures is
important, which means how many digits in the measured value we
can reply on. In other words, the concept of significant figures says
that the value should be recorded in a way that only the last signifi-
cant digit contains the error. For example, as mentioned before,

when the length of an object is measured by a ruler with a minimum
division of 1mm, the error in the measurement is one half of the
minimum division, i.e., £0.5mm, meaning that the first place of
the decimal contains the error and the second decimal place has
no meaning. Then the measurement result should be recorded as
23.440.5 mm, with the leftmost three digits for the significant figure,
not as 23.40 + 0.5 mm. In case of caliper measurements, the error is
40.05 mm, and the result should be written down as 23.40+0.05 mm,
meaning that the significant figure is four digits in this case and only
the second decimal place contains the error.

For weight measurement with an instrument with an error in the
1g digit, when the measured result is 0.134 kg, you can record the
value as 1.34 x 10! kg to show explicitly that the significant figure is
three digits. When you want to show the error together with the mea-
sured value, it should be written as (1.34+0.01) x 10! kg. In the case
of measurements with the error in the 0.1 g digit, you can write down
the result as (1.340 & 0.001) x 10! kg, showing explicitly that the
significant figure is four digits. If you simply write down 300 g, it
is not clear how many digits the significant figure is. When the
significant figure is three digits, you should record it as 3.00 x 102 g.
When it is four digits, 3.000 x 10 g is recommended. Be sure that
only the last digit of the significant figure contains the error.
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In the case of measurements with a digital multi-meter, when the
measurement range is changed, you should be careful because the
minimum digit changes automatically, and the error and significant
figures will also change accordingly. For example, when you measure
a voltage around 1.5V, the result may be 1.4V for the 20V range,
while it could be 1.38 V when the 2V range is used. Be careful that
the significant figure is now three digits and the error becomes smaller
by one order of magnitude. The former result should be written as
1.4 £ 0.1V, while the latter result should be 1.38 £ 0.01 V. Recall
that the measurement error in a digital meter is given as one unit of
the last digit in the display.

Exercise 7.2. How many digits is the significant figure for the
following measured values?

(a) 0.00167kg (b) 6400g (c) 0.012300kg (d) 100 mm

Answer (a) Three. (b) It is not clear by this value whether the
significant figure is two or three or four digits. (c¢) Five. (d) It is not
clear by this value whether the significant figure is one or two or
three digits.

7.3. Statistical Errors

The measurement error so far mentioned is a reading error, originat-
ing from the discrete scales in the measurement instruments. This
error depends on how small the sale division is in the instrument.
Another type of errors is statistical error. We can minimize the

statistical error by repeating the same measurements many times, or

by reducing the ratio between the reading error and the measured
value itself.

For example, let us consider an experiment in which the period
of a pendulum is measured using a stopwatch. The results of ten
measurements are e.g., 2.5s, 2.7s, 2.4s, 2.6, 2.5s, 2.3s, 2.6s, 2.65,
2.5s, 2.7s. (While the stopwatch displays the value down to the
second decimal place in seconds, the order of 1/100s. might be
meaningless because the stopwatch was operated by hand; such
manual operation will not ensure the precision of 1/100s. Therefore,
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the significant figure may be down to the first decimal place.) The

average value T of the n measured values T;(i = 1,...,n) is defined
by
1 n
T = - > T (7.1)
i=1

Then the result is T' = 2.540s. Here we write the value to the third
place of decimal (we will consider the significant figure later). The
error AT is defined by

AT = || e S (T - TP, (7.2)
=1
AT = %znjm—ﬂ (7.3)
=1

This is an average of remainders |T; — T'| which means how much
the i-th measured value T; deviates from the average T. The error
calculated by Eq. (7.2) is called by the sample standard deviation.
While the error AT calculated by Eq. (7.3) is usually larger than
that in Eq. (7.2), both equations are available for calculation. Our
pendulum measurement gives AT = 0.04s according to Eq. (7.2).
Then, since we have an error in the second decimal position, the third
decimal place has no meaning and so the measured result should be
written as T = 2.54 + 0.04 s with considering the significant figure.
It might be a tip for data analysis that you had better take largest
number of digits available during the calculation and then round
up the value into the significant figures properly at the end. This
result looks reasonable because the error on the order of 0.1s is
inevitable for manual measurements with a stopwatch, as mentioned,
but the final result contains an error smaller than 0.1 s thanks to the
ten measurements.

However, you can easily imagine that a more precise measure-
ment can be made by measuring the elapsed time for ten oscillations
of the pendulum at once, instead of measuring the elapsed time of a
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single oscillation. The period can be obtained by dividing the elapsed
time for the ten oscillations by ten. The elapsed times measured for
the ten oscillations are 25.4s, 25.3s, 24.8 s, 25.9, 24.3 s, 25.08, 25.3 s,
25.1s, 24.8s, 25.9s. Notice here that the significant figure is now
three digits. By following the same procedure of analysis mentioned
above, we obtain the average T' = 2.518s. and the error AT =
0.015s. This means that the second decimal place contains the error.
Then, finally we obtain the result 7' = 2.52 4+ 0.02s. By comparing
the previous result in which the single oscillation was measured,
the measurement precision is now improved by a factor of two. The
magnitude of error (about 0.1s) at each operation of the stopwatch,
which is inevitable for manual measurements, is now minimized
with respect to the measured values themselves (around 25s) by
measuring the elapsed time for ten oscillations at once. In this way,
we can reduce the statistical error by reducing the ratio (error)/

(value). The present measurements (=10-times measurements of

10-periods) correspond to making 100 repeated measurements of a
single oscillation.

This approach for measurements and data analysis are some-
times required in IPhO experimental competitions. An example of
a plausible question is as follows: Measure the wavelength of a
wave with an error smaller than 0.2mm by using a ruler with a
minimum division of 1mm. (Actually similar question was at the
experimental competition in IPhO2006 Singapore.) As mentioned
several times before, since the reading error is one half of the
minimum division, i.e., £0.5mm (which is larger than the required
error), the contestants should recall the above-mentioned method to
reduce the measurement error by repeating the measurements many
times or by measuring the length of, e.g., ten wavelengths at once.

Exercise 7.3. (a) We repeated the measurements of the length of
an object five times by using a caliper with the minimum division
of 0.05 mm. The results are shown below in mm units. Calculate the
average and error, and record the final result with error.

No. 1; 41.53, No. 2; 41.49, No. 3; 41.48,
No. 4; 41.51, No. 5; 41.47
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(b) We continued the same measurements 15 times more, and
obtained the results below. By using all of the data (20 data points
in total including those in (a)), calculate the average and the error.
Write down the final result with error.

No. 6; 41.50, No. 7; 41.49, No. 8; 41.49, No. 9; 41.52,
No. 10; 41.51, No. 11; 41.51, No. 12; 41.50, No. 13; 41.51,
No. 14; 41.50, No. 15; 41.49 No. 16; 41.51, No. 17; 41.48,

No. 18; 41.49, No. 19, 41.51, No. 20; 41.50

Answer The average and error are calculated from Egs. (7.1) and
(7.2), respectively. (a) The average is 41.496, and the error is 0.0108.
Since the second decimal place contains an error, the significant
figure is four digits. Then, the final results is 41.50 £ 0.01 mm.
The error is only slightly smaller than the reading error of each
measurement (0.03 mm) because there are only five measurements.
(b) The average is 41.499, and the error is 0.0033. Then, the result is
41.500 + 0.003 mm, in which the error is smaller than in (a), because
of the larger number of repeated measurements.

Exercise 7.4. (a) The data measured for the wavelength of a
standing wave, taken five times with a ruler with a minimum division
of 1mm, are 23.5mm, 23.7mm, 24.0 mm, 23.3 mm 23.6 mm. Write
down the final result with error.

(b) The data measured for ten wavelengths of the same standing
wave, measured five times in the same way, are 234.5 mm, 235.0 mm,
235.5mm, 234.6 mm 235.1 mm. Write down the final result with
€rror.

Answer (a) According to Egs. (7.1) and (7.2), the average is
23.62mm, and the error is 0.12 mm. The final result is thus 23.6 +
0.1mm. The error here is smaller than the reading error at each
measurement (which is one half of the minimum division (£0.5 mm))
thanks to the five-time measurements. (b) The average is 23.494, and
the error is 0.018, meaning that the second decimal place contains
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the error. Therefore, the final results is 23.49 + 0.02 mm. These
measurements are of much higher precision than in (a).

7.4. Errors in Indirect Measurements and Error
Propagation

Let us consider a measurement in which, for example, by measuring
the diameter of a circle with a ruler (its minimum division is 1 mm),
and the area of the circle is calculated with error. If the diameter
x is x = 6.5 £ 0.5mm, then the area y is calculated as y = 7
33.18 mm?. We need to estimate the range of , y+ Ay, corresponding
to the range of z, x + Az, due to the error. By referring to Fig. 7.5,

we can see how to estimate Ay;

r? =

Ay = |y(z + Az) — y(z)| 74
-[(2) -1 |

Therefore, since dy/dx = mx/2 = 10.21, Ay = 10.21 x 0.5 =
5.11 mm, meaning that the first digit in y contains the error. Then,
the final result of the area is 33+ 5 mm?. Since the first digit contains
the error, the subsequent decimal digits in the value of y are not
relevant.

This method can be extended to cases with more than two
variables. For example, let us obtain the area of a rectangle by
measuring the vertical and horizontal sides. The sides are measured
with a ruler with a minimum division of 1 mm. The measured values

¥ y=y(x)

y+ Ay
y
y—Ay

x
r—Ar z r+Ax

Fig. 7.5.
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of the sides are, e.g., 8.2mm and 17.5 mm. Then, the measurement
results of sides are 8.2 + 0.5 mm and 17.5 £+ 0.5 mm. Then, the area,
which is calculated as the product of the two sides, should contain
some error.

In general, when a quantity y is a function of n variables x;(i =
1,2,...,n); y(z1,z9,...,2,), and each of z; has a measurements
error Ax;, the error Ay of y is obtained by the following equation,
which is an extension of Eq. (7.4),

Ay= (2 n) (o) oo (P as) (7.5)
V= dry Oy 2 or, ") '

The area y of the rectangle is a product of the two sides z1 (= 8.2
+0.5mm) and z2(= 17.5+£0.5mm); y = z1 - 22(= 143.5mm?). Next,
by taking the partial derivatives, (%’1 = X9, (%’2 = x1, we obtain

Ay = \/(1‘2 . A$1)2 + (.1:1 . A$2)2
= /(175 x 0.5)2 + (8.2 x 0.5)2 = 9.66 mm?. (7.6)

Since the significant figure of x1 is two digits and that of xo is
three digits, the significant figure of y should be two digits (see
below). Then, the final result for the area is y = 140 + 10 mm?,
or y = (1.4 4+ 0.1) x 102 mm? (to explicitly show the two digits of the
significant figure).

Specifically, when it is written as y = z{ - :L‘g - a7, according to
Eq. (7.5), the relation between the error Az; of each x; and that Ay
of y is given by

A Axy\2 Azo\ 2 Az, )\ 2
2 :Wﬂ) (AY () s
Y x1 x2 Tn

which is in a good form to remember.

Figure 7.6 shows why the significant figure of ¢ in the above exam-
ple is two digits. In general, the significant figure of a product or

a quotient of the measured values should have the same digit number

as the smallest significant figure digit number among the measured
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Digit containig error
or digit affected by error

17.5 (Significant figure; 3 digits) 17.5 (Significant figure; 3 digits)
X 8.2 (Significant figure; 2 digits) 1.24 (Significant figure; 3 digits)
350 + 135 (Significant figure; 3 digits)
1400 153.74 (The 1st digit contains error.)
143.50 (The 2nd digit contains error.)
—>» 140 (Significant figure; 2 digits) —>» 154 (Significant figure; 3 digits)
The significant figure of a product or quotient of The significant figure of a sum or a difference
the measured values should have the same digit among the measured values is determined
number as the smallest digit number of significant by a measured value which has an error in the
figure among the measured values. highest digit among the measured values.

Fig. 7.6. How to determine the significant figure of results with four arithmetical
operations of the measured values.

values. The significant figure of a sum or a difference among the

measured values is determined by the measured value which has an

error in the highest digit among the measured values. But there are

exceptions as seen in Exercise 7.6. In order to determine the

significant figure of the final result, you should be always careful to

notice which digit contains the measurement error in each value.

Exercise 7.5. Write down the results of the following calculations
with the appropriate significant figures.

(a) 53 x 27 (b) 37.9x 75 (c) 41.53 = 3.8

Answer (a) Because the significant figures of both numbers are two
digits, that of the product should be also two digits; 1400. (b) The
significant figure of the product should be two digits because those of
the two numbers are three and two digits; 2800. (c) The significant
figure of the quotient should be two digits because those of the two
numbers are four and two digits; 11.

Exercise 7.6 Write down the results of following calculations with
two measured values (with error)

(a) (8.3+0.5) x (25.2+0.5) (b) (2.55 £ 0.05) x (23.2 & 0.5)
(c) (8.3+0.5)+(25.2+0.5) (d) (2.55 + 0.05) + (23.2 & 0.5)
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Answer The errors of the products and sums can be calculated
from Eq. (7.5). (a) and (b) are in a form of y = 1 - x2, while (c)
and (d) are in a form of y = 1 + 2. (a) The significant figure of
the product should be two digits; 210+ 10. (b) The product is 59.16,
and the error is 1.73. Since an error is included in the first place,
the result is 59 + 2. Notice that the significant figure should be three
digits because those of the two numbers are three digits in this case.
However, since the first place of the product already contains an
error, the first decimal digit is not relevant. This is an exceptional
example of the rule mentioned in Fig. 7.6. (¢) The sum is 33.5, and
the error is 0.71. Since the sum contains the error only in the first
decimal place, the result is 33.5 + 0.7. Be aware that the result has
three significant figures although one of the numbers has only two
significant figures. (d) The sum is 25.75, and the error is 0.502. Since
the first decimal place contains the error, the result is 25.8 +0.5.
Notice that when the error of one of the two values is much larger
than that of the other, such as in this example, the error of the final
result is governed by the lager error.

7.5. Best-fit to a Linear Function

In junior-high schools, we learn Hooke’s law, which states that the
extension x of a spring is proportional to the applied force f, written
by the equation f = kxz, where the proportional coefficient k is
called the spring constant. Let us consider an experiment to obtain
the k value of a given spring. The measurement data is shown in
Table 7.1. The extension of the spring was measured using a ruler
with a minimum division of 1 mm. For simplicity, the errors in the
masses of the weights and the acceleration due to gravity are assumed
to be negligibly small.

First, the data should be plotted on a graph. Each data point
should be accompanied by an error bar to show the magnitude of
the error. In this case, the error bars are only in the extension of
the spring. Figure 7.7 shows the applied force f (calculated from
the masses of the weights) on the vertical axis, and the resulting
extension x of the spring on the horizontal axis. This plot is reversed
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Table 7.1.

Weight (g) Force f (N) Extension z (mm)

0 0 0
10 0.098 2.0+0.5
20 0.20 7.2
30 0.29 10.3
40 0.39 11.8
50 0.49 13.7
60 0.59 18.2
70 0.69 20.7
80 0.78 23.7
90 0.88 26.3

100 0.98 30.4
1.0¢
0.8F

-

Force f (N)
o
o

e
~

pad

(A 1 - I

10 20 30

Spring Extension X (mm)

4
)

TT T T[T 71T

=]
(=]

Fig. 7.7.

on axes compared with the usual method in which the preset
parameter (f for this case) should be on the horizontal axis. But
this special type of plot is for a purpose that we can directly obtain
the proportional coefficient k& in the Hooke’s law f = kx from this
graph. The law says that the data should fit on a straight line passing
through the origin. The gradient of the line should be the spring
constant k.

Since the contestants in IPhO or in some other competitions, are
not allowed to use a computer, the fitting of a straight line to the
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measured data should be done by eye measurement. By considering

the data scattering and error bars on the graph, together with
the restriction (in this case, the restriction is that the line should
pass through the origin), three lines should be drawn, one with
the maximum gradient, a line with the minimum gradient, and
finally the most plausible line which should be between the two
other lines. The error in the spring constant k is deduced from the
upper and lower lines. Figure 7 gives the most plausible line with
k=0.8/(24.4 x 1073) = 32.8 N/m. The upper and lower lines give a
range k = 31.8 ~ 33.8 N/m. Therefore, the error is roughly +1.0 N/m,
meaning that the first place in the value of k£ contains an error
component and the significant figure is down to the first place. Then,
we obtain the final result of this experiment as £ = 331 N/m. Some
students may draw the upper and lower lines differently, giving a
larger error for k. This would be OK, however, if the upper and lower
lines are plausible by considering the scattering of data points and
their error bars. Even if each measured value of the extension = has
three digits of significant figure, the final result have only two digits of
significant figure because the data points are so scattered in this case.

Since, in this example, it is obvious (theoretical) that the fitting
lines should pass through the origin, this restriction is used for the
fitting procedure. But, in some cases, the pre-set variable z and the
measurement result y have a relation such as y = ax + b, from which
the values of both a and b need to be determined with their errors.
In such cases, the three lines should be determined by changing not
only the gradient, but also the intercept so that the values and their
errors of a and b can be obtained (see Exercise 7.7).

In some experimental competitions in IPhO, furthermore, the
measurement result y is related with the pre-set variable x by an
equation such as y = az?, and the contestants are asked to obtain the
coeflicient a together with its error experimentally. In this case, the
graph should not be drawn in z vs. y, but in 22 vs. y by calculating
the values of x? in advance (with their errors, if necessary). Then
you can obtain the value and error of a by fitting the straight
line of the data 2% vs. y on the graph. In IPhO, it is never required
to perform data fitting with nonlinear curves. However, by making
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some calculation in advance from the measured data, the quantities
plotted on the horizontal and vertical axes can be changed to make
the linear fitting possible. Such technique is frequently used in IPhO.
In fact, in IPhO2008 Vietnam, the contestants were required, from
the measured quantities, to find the quantities for the horizontal and
vertical axes on a graph to make data analysis possible by fitting a

straight line.

Exercise 7.7. (A part of the experimental competition in TIPhO2005
Spain) The voltage V' across a miniature bulb was measured by
flowing the current [ through it, and the resistance R(= V//I) of the
bulb was obtained as a function of I. The data are shown in Table 7.2.
It is shown that the resistance increases with the current because of
the heating of the filament in the bulb. From the data, obtain the
resistance value (with its error) of the bulb at room temperature (i.e.,
without current flowing).

Table 7.2.

Current I (mA) Voltage V (mV) Resistance R(2)

1.87 £0.01 21.9+0.1 11.7£0.01
2.58 30.5 11.8
2.95 34.9 11.8
3.12 37.0 11.9
3.37 40.1 11.9
3.60 43.0 11.9
3.97 47.6 12.0
4.24 51.1 12.1
4.56 55.3 12.1
4.79 58.3 12.2
5.02 61.3 12.2
5.33 65.5 12.3
5.47 67.5 12.3
5.88 73.0 12.4
6.42 80.9 12.6
6.73 85.6 12.7
6.96 89.0 12.8
7.36 95.1 12.9
8.38 112 +1 13.4
9.37 130 13.9

11.7+£0.1 182 15.6
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Fig. 7.8.

Answer The resistance is plotted as a function of the current as
shown in Fig. 7.8. It clearly shows that the resistance significantly
increases with the current (in a nonlinear manner), while the
resistance is nearly proportional to the current in the range of low
currents. Therefore, we can fit the data less than 6 mA with a straight
line. As shown in Fig. 7.8, by considering the data scattering, we
can draw three plausible straight lines (in this case, the error bars
are so small that we only have to consider the data scattering).
The intercept at the vertical axis gives the required value of the
resistance value at zero current. By considering the scattering of the
intercept, the result is R = 11.3 £ 0.1€2. The filament in the bulb is
kept at room temperature without current flowing. But we cannot
directly measure the resistance without current flowing through the
filament. This kind of data analysis is called ‘extrapolation’ in which
the values outside of the measurement range are estimated from the
data available by assuming some function (a linear function in this
case).

7.6. Best-fit to a Logarithmic Function

Let us consider an experiment in which a translucent glass with a
thickness d is irradiated by light with intensity Iy, and the intensity
I of the transmitted light is measured behind the glass. The relation
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Table 7.3.
Glass Thickness d (mm) 2.5+0.5 6.0 8.0 10.5 12.0
Intensity I (V) 4.34+0.1 1.89 0.822 £ 0.005 0.365 0.195
In([) 1.47 0.637 ~0.196 ~1.01 -1.63

between d and [ is given by

IM)ZLﬂKp(—%), (77)

where the constant A is called the extinction length in the glass. The
intensity [ of the transmitted light is measured using glass of different
thicknesses. The purpose of the experiment is to obtain the extinction
length in the glass from the data. The data is shown in Table 7.3. The
intensity of the transmitted light was measured with a photodiode
which outputted a voltage proportional to the light intensity. The
thickness of the glass was measured with a ruler having a minimum
division of 1 mm.

Since we cannot do the data fitting by a straight line directly on
a graph of I vs. d, we have to consider some data conversion. By
taking the natural logarithm of both sides in Eq. (7.7), we obtain

1mmm:—§+m%y (7.8)

This means the data plotted on a graph with d on the horizontal
axis and In(/) on the vertical axis, should be on a straight line.
The inverse of its gradient is A. Therefore, we first calculate In(7)
from the measured values of I, which are also shown in Table 7.3.
The graph is shown in Fig. 7.9 (If you use a semi-log graph, you
do not need to calculate In(7). But it seems that regular section
papers are always used in IPhO, with calculating the logarithmic
values in advance by a calculator). As mentioned before, we can now
fit to straight lines such that three lines should be drawn by eye
measurement while considering the data scattering and error bars.
From the most plausible line, we can obtain the gradient and then
its inverse; (11.7 — 2.8)/3 = 2.97. The upper and lower straight lines
similarly gives the two values of A, 2.80 and 3.10, meaning the error
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is +0.15. As a result, we obtain A = 3.0 = 0.2 mm (because the first
decimal place contains an error).

Exercise 7.8. Let us consider an experiment using a cylinder
with a piston with thermal insulating walls as shown in Fig. 7.10.
By pressing the gas confined in the cylinder with the piston, the
volume V' and temperature 1" of the gas are measured. In this case,
the relation between V and T'

T - V7~ = constant,

is known (Poisson’s law), where v is a constant value called “heat
capacity ratio”. In this experiment, the length L of the confined
area of the cylinder was measured instead of the volume of the gas
(because the cross section S of the cylinder is constant). The data
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Table 7.4.

L (mm) 300.0+0.5 275.0 250.0 225.0 200.0 175.0
T (°C) 25.2+0.5 36.1 51.7 62.8 83.2 97.5

are shown in Table 7.4. From these data, obtain the v value in the
above equation (together with its error).

L was measured with a ruler having a minimum division of
1mm, while the 7" was measured with a stem thermometer having a
minimum division of 1°C.

Answer Since the volume of the gas is V' = SL, by taking the natural
logarithm of both sides in the above equation, we get

InT=—(y—1)-InL+C, (7.9)

with an appropriate constant C'. Therefore we can plot the data
on the graph in which In7T and InL are on the vertical and
horizontal axes, respectively (Do not forget to convert the measured
temperature in °C into the absolute temperature in K). Then, by
fitting straight lines to the data on the graph, we can obtain the ~
value from the gradient. The graph is shown in Fig. 7.11 (the error
bars on the data points are too small to see). As mentioned several
times before, three straight lines should be drawn. From the line,
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EIIIA NN TN W W TN VNN NN WO N T W N W O WO 1 PR B |
) 23 24 25

InL

2:52

InT

) LLLLRRLIRE LAARRR RS

Fig. 7.11.
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we can get the gradient (2.569 —2.490)/(2.44 —2.25) = 0.416. The
upper and lower lines similarly give the gradients, 0.402 and 0.432,
respectively, with the error £0.015. Thus, it is clear that the second
decimal place contains an error. Finally, we get v = 1.42 + 0.02.

Incidentally, the v is a ratio between the specific heat at constant
pressure and that at constant volume. In case of an ideal gas, it is
known theoretically v =5/3 = 1.67 for monatomic molecule gas, while
~v="T7/5=1.40 for diatomic molecule gas.

7.7. Summary

Important points for experimental measurements, data recording and
analysis, and error evaluation are summarized as “the 10 articles”
below.

@ In the case of measurements with instruments, such as a ruler
and a stem thermometer on which the scale is marked with fixed
divisions, the reading error (uncertainty) is one half the mini-

mum increment. In the case of measurements with instruments

having a digital display of values, such as a digital multi-meter,
the reading error is one increment of the last digit.

® When the measured value on such an instrument fluctuates
due to noise or other unknown reasons (regardless of whether
the instrument is analog or digital), you should read the central

value in the fluctuation and put the fluctuating range as the

reading error. You should not adhere to the scale division or
the last digit in the display of the measurement instrument for
the reading error.

® When the measurement range (sensitivity) in the instrument is

changed, be careful to also change the reading error and
significant figure of the measured value.
The error should be, in principle, only one digit.

® ®

The significant figure is written in a way that the value contains
the error only in the last digit.
® When the measured values are scattered from measurement to

measurement, you should repeat the measurement several times,
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and regard the standard deviation calculated from these data
as the measurement error. (But you should not spend too much
time on the repeated measurements — keep in mind the time
allotted.)

By repeating the same measurement several times, you can

reduce the measurement error (statistical error) and improve
the precision. (But you should not improve the precision more
than that you need.)

In addition to repeating the same measurement, you can reduce
the measurement error by reducing the ratio of the reading error
to the measured value. For example, you can measure the
elapsed time for ten oscillations of a pendulum, rather than that
of a single oscillation.

The calculation of error should be clearly recorded on your
answer sheets by writing down the equations you have used for
error estimation, together with the numerical values. The errors

you write down on your answer sheet are meaningless without
showing any bases for the error estimation.

You can estimate the measurement errors not only through
numerical calculations, but also by using best-fit methods on a
graph. Three straight lines should be clearly drawn on the graph,
which is an important basis for evaluating the error.
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Chapter 8

Practical Exercises

In this chapter, two examples of experimental exercises are shown
(Practical Exercises 1 and 2), both of which were actually used for
Physics Challenge (the domestic competition for IPhO in Japan).

Practical Exercise 1 Experiments of Boyle’s Law and Charles’
Law, and a measurement of the atmospheric pressure by using an
cylinder (from the First Challenge).

Problem 8.1. Confirming Boyle’s law

50ml air is confined in a cylinder which is connected with a pressure
gauge as shown in Fig. 8.1. Boyle’s law says that the product of
pressure P and volume V' of the confined gas should be constant if the
temperature remains constant: P -V = ¢ (constant). By confirming
this law experimentally, obtain the value ¢ with its error. The
minimum division in the scale on the cylinder is 2ml, and that on
the pressure gauge is 5 kPa.

Answer By pushing or pulling the piston to change the pressure and
volume of the air confined in the cylinder, the data in Table 8.1 were
obtained.

The values of the product ¢(= P-V') are calculated by considering
the significant figure. The error of each product are calculated by
Ac=/(P-AV)2+ (V- AP)?2, where AV = 1ml and AP = 3kPa.
A graph in Fig. 8.2 is drawn in which the horizontal axis is the pres-
sure P and the vertical axis is the product ¢. By drawing three lines

299
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Pressure
Gauge Cylinder
s '] H_l]
Fig. 8.1.
Table 8.1.

Pressure 15043 140+ 3 130 120 102 90 80 70 65
P (kPa)

Volume 34+1 3+1 39 42 51 59 68 79 85
V (ml)

¢(=P-V) 5100+ 5000+ 5100+ 5000+ 5200+ 5300+ 5400+ 5500+ 5500+
(Pa-1) 200 200 200 200 200 200 200 200 300

6000

?)

5000

4000

P-V) (Pa-

3000
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2000

60 80 100 120 140 160
Pressure (kPa)

Fig. 8.2.

in the graph, the average of ¢ and its error are obtained:
¢ = 5200 4+ 200 Pa-1.

Be noticed that the significant figure is two digits, and the
final error is not smaller than the error of each measurement of ¢
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probably because of some systematic error (such as leakage of air,
change in temperature, etc); the data in the figure actually change
systematically, rather than randomly.

Of course, you can calculate the average and the error of ¢
numerically from the nine data of ¢;(i=1~9) in the table by using
the equations;

1 9
—Z - =5200, Ac= )2 = 70.
gt 9-(9—1) 7;1

Ne)

Therefore ¢ = 5200 £ 100 Pa - 1.

Another Solution From the data in Table 8.1, we can calculate the
values of 1/P, and draw a graph of 1/P vs. V as shown in Fig. 8.3.
By fitting a straight line V' = ¢/ P to the data to obtain the gradient,
we can get the value of ¢ with its error.

100

80 %7

60

40

Volume V (m¢)

20

0
0 0005 001 0015 0.02
1P (kPa)

Fig. 8.3.
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Ref According to the ideal gas equation P -V =n- R -T, where n
is the amount of the gas in mol, R is the gas constant, and T is the
temperature of the gas, the constant ¢ can be calculated. Since R =
8.31J/K/mol, T=290K and n=>50/(22.4 x 103) =2.24 x 1072 mol,

c=n-R-T=54J=>5400Pa -,

which is roughly consistent with our experimental result within the
error.

Problem 8.2. Confirming Charles’ law

Some amount of air is confined in a cylinder of which end is closed by
a rubber plug. The whole cylinder is immersed in water in a beaker
on a gas stove as shown in Fig. 8.4 to change the temperature of the
air inside. Charles’ law says that the volume V of the confined gas
should be proportional to the temperature T', which is V' = k-T', with
a proportional constant k. By confirming this law experimentally,

=

g
:% Stem

Thermometer

Water

Gas
Stove

Fig. 8.4.
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obtain the value k£ with its error. The minimum division in the scale
on the cylinder is 2ml, and that on the stem thermometer is 1°C.

Answer By slowly heating the water, we measured the volume of
the confined air as a function of temperature. The data below were
obtained.

According to the data in Table 8.2, we have drawn a graph as
shown in Fig. 8.5. By considering the data scattering and error bars,
we drew three straight lines. Then, the gradient of the central line
gives the value of £ and the upper and lower lines give its error. By
considering the significant figures of the measured data, we finally
obtain the result, k¥ + Ak = 0.18 + 0.01 ml/K.

Table 8.2.

Temperature 605 13+£05 33+05 42+05 56=+£05 70+0.5
(°C)

Temperature T 279 £ 0.5 286 £0.5 306 £0.5 315+ 0.5 3294+ 0.5 343+0.5
(K)

Volume V' (ml) 49 +1 50+ 1 54 +1 56 £ 1 58 +1 60+ 1

(o)}
o

Volume V (m¢f)
[8)]
(4]

[8)]
o

45
260 280 300 320 340

Temperature T (K)

Fig. 8.5.
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Fig. 8.6.

Ref According to the ideal gas equation P-V =n-R-T, k=nR/P. We
can estimate the amount of air n =48/(22.4 x 10%) = 2.14x 1073 mol.
The pressure is P=1 atom =101.3kPa, and R = 8.31J/K/mol.
Then k is calculated to be & = 0.176 ml/K, which agrees well with
our experimental result.

Problem 8.3. Measuring the atmospheric pressure

By measuring the volume of air confined in a cylinder and the force
pushing the piston (see Fig. 8.6), obtain the atmospheric pressure.

Answer After confining the air of 100ml inside the cylinder by
closing its tip with a rubber plug, the cylinder was put on a platform
scale as shown in Fig. 8.7. With pushing down the cylinder, we
measured the volume V (ml) of the air inside the cylinder as a
function of the applied force f (kgf) which was measured by the
platform scale simultaneously. The data are summarized in the
first two lines of Table 8.3. The unit of force is changed into
Newton by multiplying 9.81 cm /s?, which is listed in the third line of
Table 8.3.

The piston is pushed from outside not only by the force f, but also
by the atmospheric pressure Fy. Therefore, the total force pushing
the piston from outside is f + Py - S, where S is the cross section
of the cylinder. On the other hand, the piston is also pushed from
inside in the opposite direction, i.e., by the air confined. The force
is P- S, where P is the pressure of the confined air. Since the forces
acting on the both sides of the piston is balanced, we can get

f+Py-S=P-S. (8.1)
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Push
‘ down
Piston

il

Platform
scale

N

Fig. 8.7.

Table 8.3.

Volume V (ml) 100+£1 90 80 70 60 50 44
Force f (kgf) 0 1.1£+£01 25 40+£02 6.3 93+£03 12
Force f (N) 0 11+1 25 39+£2 62 91+£3 118

Inverse of Vol.  0.0100+  0.011  0.013 0.014 0.017 0.020 0.023
1/V (ml™) 0.0002

On the other hand, by recalling Boyle’s Law P -V = ¢ (constant),
we can eliminate P from Eq. (8.1), and get the relation

f=eS/V-D-S. (8.2)

Therefore, when we draw a graph in which the vertical axis is f
and the horizontal axis is 1/V, the intercept at the vertical axis gives
the value of —Fy - S. Then we can get the atmospheric pressure Fy
because we know the cross section S of the cylinder.
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Fig. 8.8.

The inverse of volume is calculated with the error. Then, we
have made the graph as shown in Fig. 8.8. The error bars are too
small to see. When we fitted three straight lines to the data, we
imposed a restriction that the lines should pass through a point
of f=0(N) at 1/V=0.01ml~! (which is the initial situation that
the air of 100ml at the atmospheric pressure is confined in the
cylinder).

The intercept of the fitted lines at the vertical axis give

Py-S =95+ 5N. (8.3)

The cross section S of the cylinder was obtained by measuring
the distance 1 between two scale lines showing V. =5-1; S =V/l =
9.4 £ 0.2 cm?.

Therefore, by combing Eq. (8.3), we get Py = 100 £ 6 kPa. This
result agrees nicely, within the error, with the known value of the
atmospheric pressure, 101.3 kPa.
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Practical Exercise 2 Measuring Planck’s constant (from the
Second Challenge)

Purpose of Experiments

In Experiment 1, we will measure the wavelength \ of light emitted
from light-emitting diodes (LED) by using interference phenomenon
with a diffraction grating. From the A, we will calculate the frequency
v of the light by a relation

C
=— 1
A=<, (5.1)

where ¢ is the speed of light. In Experiment 2, we will measure the
energy F of the light. Then, by using the Einstein relation between
F and v,

E = hv, (8.2)

together with the value of v obtained in Experiment 1, we will
be able to get the value of Planck’s constant h. Throughout the
experiments, we will understand the wave-particle duality of light, a
basis of quantum physics.

Instruments and Parts used
(1) A simple spectroscope (Fig. 8.9)

This instrument is used for measuring the wavelength of light by
using interference phenomenon produced by a diffraction grating.
A rectangular box shown in Fig. 8.9 has a slit @, through which
the light under investigation comes in, and on the opposite end of
the box, a window @ with the grating stuck on, through which an
observer look into the box. The observer will see a spectrum with
rainbow color on an inner wall next to the slit if you light through
the slit ® with room light or a miniature bulb. You can measure the
distance between the slit @ and the aimed color in the spectrum by
using markers (thin openings) on a sliding plate ®. Move the sliding
plate ® with your hand to adjust the marker to the aimed color in
the spectrum. And then measure the distance between the slit and
the marker with a ruler on the outside of the box.



308 Physics Olympiad: Basic to Advanced Exercises

Window @ Look through this widow.
(A diffraction grating is alrghdy attached.)

|
| :
Y v 174
1

Slit @  Thin openings  Sliding Plate @
(Marker)

Fig. 8.9. A simple spectroscope.

' 6 Clip terminal
Electrode
poles

ﬂ%ﬂ &

LED(red) L (green)

LT T

voltage 6V LED(blue) " Mini bulb
control

Fig. 8.10. Lighting board for LED and bulb.

Cautions

Be careful not to damage your eye and glasses when you look into
the box through Window @ .

(2) Lighting board for LEDs and a miniature bulb (Fig. 8.10)
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(

— Lead
+ Lead

Fig. 8.11. LED.

The power for LEDs and a miniature bulb is supplied by four
batteries in series with the maximum voltage of 6 V. The voltage
can be controlled by a knob in a range 0~6V as shown in Fig. 8.10.
The clip terminals (red: positive, black: negative) of the batteries
should be connected properly to the electrode poles of a LED or
a miniature bulb in order to light them. In the case of LEDs, the
polarity is important: Be sure that a longer lead of a LED is for
positive and a shorter one for negative, as shown in Fig. 8.11. When
connecting the clips, be careful not to connect positive to negative
or vice versa.

Cautions

Be careful that LEDs can burst if the applied voltage is too high.
The voltage should be always applied from zero volt and be increased
slowly. LEDs can shine very brightly when the voltage is high enough.
Do not look at a brightly illuminated LED for a long time in order
to protect your eyes. Also, since the extreme brightness shortens the
life of the LED, do not leave it in this condition for a long time.

Experiment 1

We will measure the wavelengths of red, green, and blue light
emitted from LEDs, by using interference phenomenon produced by
a diffraction grating. When you irradiate a diffraction grating with a
laser beam as shown in Fig. 8.12, you will get diffraction spots on the
screen behind. The grating has a few hundred evenly-spaced parallel
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Screen B

| Diffraction
grating

Laser

Fig. 8.12. Interference experiment with a diffraction grating.
X
e e B e e e J
Laser 0]
light
T8
| “~dsinf
I
Enlarged ! Screen

fine grooves per mm. Light that falls in the grooves is scattered in
various directions, and interferes with each other to form interference
spots (diffraction spots) on the screen. Since the space d between the
grooves on the grating is much shorter than the distance 1 between
the grating and the screen, the rays of light from the grooves can be

view of the grating

Fig. 8.13. Rays of light diffracted by the grating.

regarded parallel to each other, as shown in Fig. 8.13.
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A diffraction spot is at a point located at x from the center of the
screen, if the path difference between the two rays from the adjacent
grooves to the point on the screen is a multiple of the wavelength A of
light. Since the path difference is dsin 6, this condition is written by

dsinf =m\ (m=0,1,2,...). (8.3)
Substituting sin 6 = \/12317 into this equation gives
xd

WZWM (m=0,1,2,...). (8.4)

On the same principle, we can also get a diffraction pattern by
the simple spectroscope (Fig. 8.9) as shown in Fig. 8.14, in which
the light under investigation is not purely monochromatic so that we
will obtain colorful spectrum; since the = in Eq. (8.4) depends on
the wavelength of light, different color appears with different . Our
grating has the spacing between the grooves d = 2.00 x 10~ m. The
condition of Eq. (8.4) for constructive interference of diffracted light

L Simple

spectroscope

Spectrum
Grating .-
e $x
— X - P . Battery
—= S—
Diffracted \ LED
Slit

Close-up of diffraction
Phenomenon at Grating

Fig. 8.14. Measurement with the simple spectroscope.
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for our spectroscope is written by
xd B
VIL? + 2?2

where L is the distance between the grating and the inner wall on

m, (8.5)

which the spectrum is formed (L = 220 mm). In our experiments, we
always observed the first-order diffracted light only (m = 1).

Question 1 By introducing the light from each LED (red, green,
and blue) into the simple spectroscope through the slit, measure the
distance z for each color on the wall of the spectroscope. By moving
the sliding plate ® in Fig. 8.9 to bring a marker to the center of a
bright line in the spectrum, you can measure the distance x between
the marker and the slit from the outside of the spectroscope box
by a ruler (sample data is shown in Table 8.4). If the bright line
in the spectrum has some width so that it is difficult to determine
the center position of the line, you can regard such uncertainty
as the measurement error Az. Based on the results, calculate the
wavelength A of light from each LED.

Question 2 Calculate the measurement error A\ of the wavelength
of light from each LED, and record the final result of each wavelength
with the error with the proper significant figure. You can assume for
simplicity that L (=220mm) and d(=2.00 x 107%m) in Eq. (8.5)
contain no error.

Question 3 Calculate the frequency v of light (together with the
error) by combining Eq. (8.1) and the wavelength of each LED
light obtained above. Here you can assume that the speed of light
¢(=3.00 x 108 m/s) contains no error.

Table 8.4.

Distance x + Az (m)

Red LED (7.440.1) x 1072
Green LED (6.3 +0.1) x 1072
Blue LED (5.6 +0.3) x 1072
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Experiment 2

In this experiment, we will measure the current-voltage characteristic
curve of each LED to show that the light of its frequency v has
energy of hrv, and calculate Planck’s constant h using the wavelengths
obtained in Experiment 1.

The LED is made of materials called “semiconductors”. In terms
of electric current conductivity, materials around us are categorized
roughly into three types. The first type is metal through which the
electric current flows easily. The second type is insulator in which
the current hardly flows. And the third one is semiconductor which
has characters between metal and insulator. The electric current is in
general a flow of electrons which can be found in any atoms. But the
three types of materials are different from each other in the energy
states of electrons and the amount of electrons that can move freely
to create a current. The energy states of electrons in semiconductors
can be schematically shown in a simple diagram in Fig. 8.15.

Most electrons contained in atoms that make up a crystal
reside in lower energy states called “valence bands”. The higher
energy states are called “conduction bands”. Between the valence
and conduction bands, there is a forbidden energy gap in which
no electrons can stay. Electrons in the conduction bands can flow
through the material to contribute current, while electrons in the
valence band cannot.

High A Conduction

° Electron Band

I

8 i hv Forbidden

= . .

s .\N\( Light Energy Gap

g v

CH

o Valence
. Band

Low

Fig. 8.15. Energy states of electrons in semiconductors.
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In LED, electrons in the valence band are pumped up into the
conduction bands by using the energy from a battery. Then, when
such electrons fall back to the valence band, the energy which equals
the energy difference between the conduction and valence bands
(i.e., the width of the forbidden energy gap), is released as light
emission. The width of the forbidden energy gap is different from
one semiconductor to another. Therefore, we can change the color of
light, which corresponds to the wavelength or frequency of light, by
tuning the gap energy of the LED semiconductor.

The energy of those electrons which are pumped up by a
battery is E=eV, where V is the voltage of the battery and e is
the elementary charge. When this energy is larger than eV, the
minimum amount of energy required to leap over the forbidden gap,
or in other word, when a voltage larger than Vj is applied, the current
begins to flow through the LED and to emit light. As mentioned
before, the LED emits light when electrons fall across the forbidden
gap from the conduction band to the valence band, the energy of
light emitted is given by

E = hv = ¢€V}. (8.6)

By connecting two digital multi-meters (one is as a direct current
meter, and another is as a direct volt meter) with the Lighting board
(Fig. 8.10) using some additional leads, measure the current flowing
through a LED as a function of the voltage across it.

Question 4 By gradually increasing the voltage applied to a LED,
find the threshold voltage Vy at which the LED starts to emit light
(The sample data are shown in Table 8.5). Because it is difficult
to judge whether the LED lightens by naked eyes, you will have
uncertainty in determining V4. Then, you can regard such uncertainty

Table 8.5.

Voltage Vo + AVh (V)

Red LED 1.6£0.1
Green LED 1.8+0.1
Blue LED 26=£0.1
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as the measurement error AVjy. Next, calculate the energy of light
E=eVy together with the error. Here you can assume that the
elementary charge e =1.60 x 10~'2C contains no error for simplicity.

Question 5 From the results including Experiment 1, draw a graph
in which the vertical axis is E' and the horizontal axis is v. Do not
forget to put error bars for each data point. Then, by fitting the data
with Eq. (8.6), obtain the value of Planck’s constant h, together with
the error. Do not forget to include the unit.

Question 6 For each LED, measure the current flowing through as
a function of the voltage (The sample data are shown in Table 8.6).
Do not let a current larger than 20mA flow. You should properly
change the measurement range in the digital multi-meter; 2V or
20 V-range for voltage measurement and 2mA or 20mA for current
measurement.

Next, from these data, draw two graphs, one is in linear scale (on
a section paper) and the other is in semi-logarithmic style in which
the vertical axis is the current and the horizontal axis is the voltage.

Table 8.6.

Red LED Green LED Blue LED
Voltage Current Voltage Current Voltage Current
V (V) I (mA) V (V) I (mA) V (V) I (mA)

1.41 4+ 0.01 0.010 + 1.66+0.01 0.015 + 2.444+0.01 0.010 +
0.001 0.001 0.001
1.44 0.017 1.68 0.026 2.49 0.015
1.5 0.062 1.71 0.046 2.55 0.031
1.55 0.145 1.72 0.063 2.59 0.053
1.59 0.310 1.74 0.110 2.62 0.098
1.64 0.720 1.77 0.230 2.70 0.300
1.7 2.30 £0.01 1.80 0.460 2.77 0.820
1.73 5.80 1.83 1.05+0.01 2.81 1.35+0.01
1.8 10.4 +0.1 1.86 2.00 2.89 3.95
1.85 15.4 1.92 5.20 2.97 9.00
1.89 19.0 1.97 9.90 3.03 14.0 £ 0.1
2.01 14.7 £ 0.1 3.11 19.9

2.06 19.8
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Three data sets for these three LEDs should be plotted on a single
graph. Each curve is called a “current-voltage characteristic curve”
of the LED.

Cautions

1. The range of voltage should be determined by yourself. Be sure
that the current should not exceed 20 mA. If it exceeds, the LED
will be broken.

2. You should not measure the current larger than the maximum
for each measurement range in the digital multi-meter. A fuse in
it will be blown if the current exceeds the maximum. You should
properly change the measurement range in the digital multi-meter.

Question 7 Here we define the threshold voltage Vi used in
Question 4 by the voltage that corresponds to a current of 0.1 mA,
instead of by the voltage for lightening. Read the voltage V| of each
LED from the semi-logarithmic graph, and calculate E(=eV)) for
each LED. Next, draw a graph in which the vertical axis is F¥ and
the horizontal axis is v. Then, by fitting the data with Eq. (8.6),
obtain the value of Planck’s constant h, together with the error.

Answer

Question 1 From the data in Table 8.1, the wavelength of each light
is as follows:

Red: A =638 nm; Green: A\ =551 nm; Blue: A = 493 nm.

Question 2

From Eq. (8.5), we get A = \/ngidim. Then by taking the derivative
with z,

d\ L2

— = A—.
dx z(L? + z?)
Due to the error Az in the measurement of z, the error in A is

dA AL?
AYN M
* z(L? + 2?)

AN = = Ax

dx
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It is calculated for each LED:
Red: AX =7.7nm; Green: AN = 8.1nm; Blue: A\ = 24.8 nm.

Since the significant figure of x is two digits, the final results of the
wavelength are

Red: A4+ AX =640 £+ 10nm,
Green: A+ AX =550 + 10nm,
Blue: A £ AX =490 + 20nm.

Question 3 Since Eq. (8.1) tells that v = £, the error of frequency
due to the error of wavelength is Av = [% AX| = ¥ AX. The frequency
v of each color of light is,

Red: 4.70 x 10" Hz; Green: 5.44 x 10 Hz; and
Blue: 6.09 x 10** Hz.

The Av is calculated for each color;
Red: 0.06 x 10" Hz; Green: 0.08 x 10" Hz; Blue: 0.31 x 10" Hz.
Then by considering the significant figure, the results are

Red: v+ Av = (4.740.1) x 10" Hz,

Creen: v+ Av = (5.440.1) x 10 Hz,
Blue: v+ Av = (6.1 +0.3) x 10 Hz.

Question 4 Since £ + AE = e(V = AV}), the results are
Red: E+AE=1.60 x 107" x (1.6 £0.1) = (2.6 £0.2) x 10719 ],
Green: E4+ AFE=1.60 x 107" x (1.8 £0.1)= (2.9 £ 0.2) x 107 J,
Blue: E+AE=1.60 x 107" x (2.6 +£0.1) = (4.2 4+ 0.2) x 10719 J.

Question 5

Although the data points are scattered, we fitted straight lines
passing through the origin (Fig. 8.16). The gradient of the fitted line
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. . —19
is Planck’s constant h. From the central line, we get h = % =

6.07 x 10734 J- sec. From the upper and lower lines, we estimated the
error. Then, the final result is h + Ah = (6.1 £ 0.5) x 1073 J- sec.

Question 6 The data in Table 8.6 are plotted on linear scale and
on semi-log scale, respectively, as shown in Fig. 8.17:
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Fig. 8.18.

Question 7 The threshold voltage Vjy of each color LED is obtained
from the semi-log graph in Question 6: Red: Vy = 1.53 4+ 0.01V;
Green: Vy = 1.734+0.01 V; Blue: Vj = 2.624+0.01 V. Then the energy
of light E = eVj is calculated: Red: (2.45 4 0.02) x 107! J; Green:
(2.7740.02) x 10712 J, Blue: (4.1940.02) x 10~ J. Next, we drew a
required graph as shown in Fig. 8.18. From the gradient of the fitted
lines E = hv, we obtained the value of Planck’s constant h = (5.9
0.6) x 10734 J-sec. This is consistent with the result in Question 5.

Ref According to Chronological Scientific Tables, the value of
Planck’s constant is h = 6.626 x 1073% J- sec.
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Appendix

Mathematical Physics

Although the participants in the International Physics Olympiad
(abbreviated IPhO) are not required to have the sophisticated
skills for calculus, differential equations and complex number, these
skills are extremely useful for describing and studying physics.
Approximation formulae derived by the calculus may help us to
extract physical essence from complicated phenomena. Furthermore,
the employment of differential equation may enable us to find that
apparently unrelated physical phenomena have analogous mathemat-
ical structures.

In this appendix, we outline the differential and integral calculus
out of the mathematical physics which is not taught in the high-
school education in Japan. It will help you understand well to solve
problems with your own hands.

A.1. Inverse Trigonometric Functions

It is impossible to define the inverse trigonometric functions them-
selves because they are not single-valued functions. Hence, we restrict
the domain of coordinates such that the values of functions and
the coordinates have one-to-one correspondence. Then it is possible
to define their inverse functions. For example, arcsin x and arctan x
are the inverse functions of sinz and tanz in domain [—m/2,7/2],
respectively. The inverse function of cosz is denoted by arccos x in
domain [0, 7].

The inverse trigonometric functions allow us to easily calculate
some particular integrals which require the integration by substitu-
tion in the high-school mathematics in Japan.

321
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Example A.1. Differentiate the following functions:
arcsinx, arccosz, arctanz

Solution

Let y = arcsin z, then from the definition we have x = sin y. Thereby,
differentiation of this equation yields

@— LI ! ("cos >0 E[—I ED
dr  dr/dy cosy \/1— a2 ' 4 Y 2°21)°

Thus, we obtain

(arcsinz) = 1/4/1 — 22
Similarly, we have
(arccosz) = —1/4/1 — 22, (arctanz) = 1/(1+ z?). [ |

From Example A.1, we obtain the following integral formulae.

. T
= arcsin — + const.,

/ dx
Va? — 1?2 a

/ dx T . ¢
— | —— = arccos — + const.
A /a2 _ 1:2 a
dx 1 T
-5 = = arctan — + const.
a® +x a a

Example A.2. Using the energy conservation law of harmonic
oscillation mv? + ka? = E(E is a constant), express dt/dz as a
function in terms of x. Furthermore, integrate it to derive the relation
between z and t.

Solution

2 _ 28 _ k.2 in %  Jk [2E 2
From v® = == — =%, we obtain o7 = (/->1/5= — x*, or,
dt m 1
dr \ k /%_ajg



Mathematical Physics 323

Using the Integral formula derived in Ex. A.1, we have

R in g/ = (¢ is an integral constant.)
= k arcsin 2E.’E @ | ,(® 1s an 1mtegral constant. ),

from which we obtain
T = E sin Et +
VK Vom v u

A.2. Useful Coordinate Systems

The use of an appropriate coordinate system can simplify the
calculation in physics problems. Here, we review three most useful
coordinate system: The two-dimensional polar coordinate system, the
cylindrical coordinate system and the spherical coordinate system (or
the three-dimensional polar coordinate system).

A.2.1. Two-Dimensional Polar Coordinate System

In the two-dimensional polar coordinate system, a point P_ls.> express-
ed by (r,0), where r=OP, and 6 is the angle between OP and the
positive z-axis as shown in Fig. A.1. The relations between the two-
dimensional polar coordinates, (r,6), and the rectangular (Cartesian)
coordinates, (z,y), are given by x = rcosf and y = rsinf. The
component along OP is called the r-component while the component

o
P
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—
in the counter clockwise direction perpendicular to OP is called the
f-component. The unit vectors in the polar coordinate system, e,
and ey, can be expressed as

o cos 0 o — —sin@
"~ \sing )7 07 cosf )’

Example A.3. The position vector r is expressed in terms of (r,0)

and e, as
<x> <cos«9>
T = =r| . =re,.
Y sin 6

Calculate the velocity vector v = 7 and the acceleration vector a =
in the polar coordinate system. That is, find the polar components
Uy, Vg, Gy, Gy Where

V= Ur€r +Vg€y, a = Qr€, + Qg€y.

Solution

First, calculate the time derivative of the unit vectors:
o —0sinb _je o — 0 cos 0 _ _de
" \beoso )7 0T Osing ) "

v=7=re,+reé, :¢6T+r969
a=1v=ie, +ré, + rleg + riey + rbeg
= ie, + rley + ey + roey + ro - (—éer)
= (# —r6%)e, + (270 + rb)ey,

from which we have v, = 7, vy = 7'_9, ap =1 — r0? and ag = 270 + ré.
[ |

Example A.4. Suppose a planet, P, of mass m moves around
the Sun, S, which is of a larger mass, M, due to the universal
gravitation F' = GM?”—“, as shown in Fig. A.2. Here, r and G denote
the distance between the planet and the Sun and the gravitational
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Fig. A.2.

constant, respectively. Since M is large, the Sun can be considered at
rest.

(1) Show that the angular momentum L = m#r20 is conserved.

(2)

Find the total energy E of the planet moving around the Sun in
terms of r, its time derivative 7, G and L.

Find the condition for the total energy FE that the planet
continues turning around the Sun and does not move from the
Sun to an infinite distance away.

Finally, supposing that the planet moves on a circular orbit
around the Sun, find the relation between the radius of the planet
orbit and the angular momentum L.

Solution

(1)

The universal gravitation has no #-direction component. Such a
force is called the central force. The equation of motion in the
f-direction is

mag=0 = 2i0+7r0=0.
Then,

@_i(
a at"

Namely, L is conserved in time.

r20) = 2mri0 + mr0 = mr (270 + r6) = 0.

Suppose the mechanical energy of the planet moving around the
Sun under the universal gravitation. Let the potential energy
be zero at r = oco. The potential energy U is obtained by the
integration of the universal gravitation —Gy—Qm from r = r to
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U:/ <_G]\gm>dr:_GMm'
, r r

On the other hand, the kinetic energy K can be written in
terms of the polar coordinates as

Therefore, the total mechanical energy £ = K + U becomes

1 L2 GM
E = —mi? + m

2 omr2  r

. (A1)

The sum of the second term and the third term on the right
hand side of Eq. (A.1) is called the effective potential:

12 GMm
- 2mr? r

Up(r)

Since the angular momentum of the planet, L, is constant, the
right hand side of Eq. (A.1) is the sum of the kinetic energy
in the r direction, %mﬁ, and the potential energy Uy(r) which
is determined by r. Hence Eq. (A.1) can be regarded as the
mechanical energy of a one dimensional motion of a particle in
the r direction.

Now, the derivative of the effective potential becomes

dUy L? . GMm
dr mr3 r2
The effective potential Up(r) has its negative minimum at r =
2
rg = m Note that when the distance between the planet and

the Sun is infinity, » — oo, the effective potential goes to zero,
Up(r) — 0. The outline of Up(r) is shown in Fig. A.3.
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Fig. A.3.

Suppose the planet is moving away from the Sun (7 > 0) at
some instant. If £ > 0,7 continues to be positive as r increases
(see Fig. A.3) and the planet moves from the Sun to an infinite
distance away.

On the other hand, if £ < 0, as r increases, 7 of the planet
becomes zero, i.e., %mi‘Q = 0. Thereafter, 77 < 0 and the planet
approaches the Sun. The planet goes back and forth between
two points of 7 = 0. Thereby the planet stays at a range of finite
distance from the Sun. Therefore the condition that the planet
continues turning around the Sun is given by £ < 0.

Since r is constant when the planet moves circularly, the radius
should be r = 7o in which effective potential Uy(r) takes its
minimum value. Hence, the relation between the radius r and
the angular momentum L is

L2
r=—=——:.
GMm?

A.2.2. Cylindrical Coordinate System

In the cylindrical coordinate system, a point P(z,y,z) is
expressed by (r,0,z), where (r,0) are the polar coordinates of the
foot of perpendicular from P to the x—y plane, as shown in Fig. A.4.
The volume element in this coordinate system is given as follows.
Since the infinitesimal area dS in the region, » ~ r + dr and
0 ~ 0 + df, is expressed by dS = rdrdf as shown in Fig. A.5, the
infinitesimal volume dV in the region, r ~ r + dr,0 ~ 6 + df and



328 Physics Olympiad: Basic to Advanced Exercises

A
Z M.

~
~
~
~

P

"o

|

]

|

|

]

|

|

N r \
0 ‘\E

X
Fig. A 4.
Yy
A
dS
-
; rd@
de
o LN > x
Fig. A.5.

z ~ z+dz, is expressed by dV = rdrdfdz. The volume integral of
a function f(r,0,z) expressed in terms of the cylindrical coordinates
is written as

///de(r,Q,z) :/dz/dQ/dr[r-f(r,Q,z)],

where the right hand side in the above equation stands for the integral
with respect to z,0,r (see Example A.5) and is called a multiple
integral.

Example A.5. Using the volume integration with respect to the
cylindrical coordinates, find the moment of inertia I; of a uniform
cylinder of radius R, height L and mass m around the central axis.
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And also find the moment of inertia Is of a uniform sphere of radius
R and mass m around an axis through the center.

Solution

Cylinder: Let the density be p. Then we have

L 2m R R2
m:/ dz/ d9/ dr[r-p]:L-Qﬂ-p-?:ﬂRQLp,
2 R
L = / dz/ d9/ dr(r - ,01" =L-2r-p- e

R?

2 2
=7mRL =
R°Lp- 5 2mR

Sphere: Let the density be p. For given z(—R < z < R), the value of
r is restricted to the region, 0 < r < v/ R? — 22. Hence we have

R 27 VR2—22 R R2 — 2
m:/ dz/ d@/ dr[r-p]:27rp/ dz
-r Jo 0 R 2

4
= gﬂ-Rspa
R 2r VR2—22 R 2 2\2
I, :/ dz/ d9/ drlr - pr?] :27Tp/ Mdz
-r Jo 0 “R 2
8

2
_°% _p5 _ 2
—157TRp 5R. u

Compare the above calculation with that given in Example 2.13.

A.2.3. Spherical Coordinate System

In the spherical coordinate system, a point P (z,y, z) is expressed
by (7,0, ¢), where r is the distance between the origin and the point
P, 6 is the angle between the positive z-axis and OP, and ¢ is the
angle between the positive z-axis and the projection of OP to the
x—y plane as shown in Fig. A.6.

Example A.6. Express (z,y,z) in terms of (r,0,¢). Find the
infinitesimal volume in the region, r ~r+dr, 0 ~ 0+df and ¢ ~ ¢p+de.
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Fig. A.6.
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Fig. A.7.
Solution

From Fig. A.6, we have x=rsinfcos ¢,y =rsinfsin¢o, z=rcosb.
From Fig. A.7, the lengths of edges of the infinitesimal region
are given by dr, rdf and rsinfd¢, respectively. Therefore the
infinitesimal volume can be expressed by

dV = r? sin 0drdfd. (]
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Example A.7. Suppose there is a point mass, m, at a distance r
from the center of a uniform spherical shell of radius a and mass
M. Find the expression for the gravitational potential energy of the
point mass.

Solution

Let the center of the spherical shell be the origin. Then, the potential
energy is spherically symmetric and depends only on r. Therefore, the
potential energy of the point mass at the distance r from the origin
is the same as that of the point mass at P(0,0,r) in the Cartesian
coordinates. As shown in Fig. A.8, the potential energy dU generated
by an infinitesimal mass dM at a point Q(a, 0, ¢) is given by

o GmaM GmdM
1 V12 = 2arcos0 + a2’
2 z
m|P m|P
r r
n n
M
[wm ==t === ) Q
DI ) dM
a Q % a
M O 'y O
x

(a) (b)

Fig. A.8. (b) is a cross section by the plane including the z-axis and the point
Q in (a).
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where the length of the segment PQ, 71, is expressed as r4 =
V12 — 2ar cos  + a2, by using the cosine theorem. The infinitesimal
mass dM is given by

M M
dM = ——a?sin0dfde = — sin 0d0d¢.
4dma? A

Then, we can express the potential energy as follows:

27 s :
GMm sin 0
U:/dU:/d/dG[— )
S 0 ¢ 0 A \/r2 — 2racosf + a?

where S is the spherical surface.
Denoting s = cos 0, we get

-1
U:QW-GMm ds
1 Vr2—2ras+a?
B GMm/
1 —2ras+a2

Computation of the definite integral yields

-1
/1 | V1?2 —2ras + a? ’
~1 V1?2 —2ras+ a? —ra

_|7'—|—a|—‘7’—a‘_ 2/7’,r>a
B ra | 2/a,r < a.

s=—1

We finally obtain

GMm
— . r>a
_ r
U= GMm
— , r<a.
a

When r < a, U(r) is constant, so that the gravitational force is zero
in this region. The potential energy at a point outside the spherical
shell is equivalent to that generated by a point mass M located at
the origin. |



Mathematical Physics 333

A.3. Taylor Expansion

Given a n-times differentiable function f(z), the polynomial

Pu(e) = f(a) + fa)(e —a) + T (@ —ap?

M) (g n k) (g
f ()(:L‘—a)”: f ()(.C[:—a)k,

n:

k=

o

is called the n-th order Taylor polynomial of f(x) at x = a. When
(x — a) is sufficiently small, the difference between P, (x) and f(x) is
of the same order as (z —a)"*?!, so that we can approximate f(z) by
P, (x) to this order. Conversely, a polynomial different from f(x) by
the order (z — a)"*! is P,(z) alone. The function

> £(k) (g
T(z) = lim P,(z) :Zf k'( )(:c—a)k,

n—oo

is called the Taylor series of f(x) at # = a. When the Taylor
series T'(x) converges and coincides with f(x) everywhere in the
domain of f(x), it is said that f(x) can be expanded in the
Taylor expansion. When a = 0, the Taylor expansion is called
the Maclaurin expansion.

Example A.8. Derive the Maclaurin expansion of f(z) = =

(2] < 1). -

Solution

Let us denote

1
f(;v):m:ao+a1x+a2x2+a3x3+--- : (A.2)
Substituting x = 0 into Eq. (A.2), we obtain ag = 1. Differentiating
Eq. (A.2) with respect to x, we have

f(z) = = a1 +2a0x+3az3x> +- -+ kapz® 4. (A.3)

1)

Substituting = 0 into Eq. (A.3), we obtain a; = 1.
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In the same way, “Differentiate and substitute x = 0 into the
equation derived”. Differentiating f(z) k times, we get

k!

and substituting x = 0 into the above equation, we can get the
coefficient of z* as aj, = 1. Hence, the Maclaurin expansion of f(z)
becomes

1 o0
f@)=g——=1+a+a’+.- =) a" (A.4)
k=0

Another Solution

The identity,
1-—z)1+z+- - +2%) =1—zF1

derives the following

k+1
r l—=

I+z+4--+2" =
1—2z
The difference between f(z) = ;== and 1+z+---+2" is of the order
zF+1 when |z| < 1. Thus, 1+ 2+ ---+ z* is the Taylor polynomial,
and taking the limit & — oo we have the Maclaurin expansion,
Eq. (A4). [ |

Taylor expansions of rational functions can often be derived easily
as above.

Example A.9. Derive the Maclaurin expansions for sinz,cosz,
and e”.

Solution
Differentiating f(z) = sinz with respect to x, we have
() =cosz, f"(x)=—sinz, f"(z)=—cosuz,

Ff9(z) =sin,...
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In general, fC¥)(z)=(=1)Fsinz, fC*+)(z)=(~1)kcosz. Thus,
FER(0) =0, FEED(0) = (-1,

Suppose f(x) = ag+ a1z +ax®+- - = > 50 arz®, then we have
ag =0,a1 =1,a9 =0,a3 = —%, ..., and obtain
o0 k
(G
sma:—:c—ga: + - k_om

In the same way, the Maclaurin expansion of cos x is obtained as

1 — (—1F o
cosa:—l—ga:—k kz_o( ':c .

Note that since sinx is an odd function of x, it is expanded in a

series of odd power of z, ?**1. In the same way, since cosz is an

even function of z, it is expanded in a series of even power of z, x%*.

Next, we derive the Maclaurin expansion of f(x) = e*. Since

F@) = f(2) == [0 (@) = = et
= f(0)=f"0)=-=fB0O)y=-.- =1,

the Maclaurin expansion of e* is given by

<1
" liad s = 0
k:

A.4. Taylor Polynomials as Approximation Formulae

Taylor polynomials provide a given function with approximate
expression at particular accuracy. Therefore, they are useful in order
to calculate physical quantities with the required accuracy.

Example A.10. Derive the second order approximation formula
(Taylor polynomial) of f(z) = (1 + x)%.
Solution
fl@) = al+a)* Y, (@) =ala— 1)1 +2)*7
= f(0)=a, f"(0)=a(a—1).
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The second order Taylor expansion is

-1
(1+x)“%1+ax+%x2. u

Example A.11. Suppose there are a couple of electric charges ¢
and —q, respectively, at (0,d) and (0, —d) in vacuum, as shown in
Fig. A.9. Derive the potential V' at (x,y), which is located sufficiently
far from the origin, up to the first order with respect to d. Let the
potential at infinity be zero, and denote the vacuum permittivity
by £0-

y
(x,y)
d
aq
0 > X
_d _q
Fig. A.9.

Solution

By definition,

q 1 q 1

V= - _
dmeo \/aT +(y —d)?  4meo a2+ (y+ d)?

On the other hand, using the approximation formula in Exam-
ple A.10, we have

1 o ( 2yd—d2>‘5
Va2t ly—d? a2ty 22 + 2
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In the same way,

1 B 1 <1 yd )
VETGT D VErg\ PR
Therefore, we obtain

_ 4 yd
27 (xz +y2)%'

Example A.12. In the presence of a uniform and weak magnetic
field B, a particle of charge ¢ and mass m with velocity v is shot
toward a point P on the screen which is located at distance L apart
from the initial position of the particle, as shown in Fig. A.10. The
incident particle is moving perpendicularly to the screen. Derive the
distance [ between P and the point where the particle actually hits
the screen. Assume that the deflection angle of the particle (which
indicates the change in the advancing direction) is sufficiently small.
You may use approximation formulae: sinf ~ tan =~ 6, and cos 6 ~
1—6%/2 (]0] < 1), if necessary.

Solution

Because the Lorentz force acts perpendicularly to the velocity of the
particle, it does not do any work on the particle. Hence the speed
of circular motion of the particle remains in constant value v. The
centripetal force of the uniform circular motion is supplied by the
Lorentz force. So, let r be the radius of the circular motion, then we

Screen
B
K
I
q :* ; P
:: L >
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Fig. A.11.
have

2
v mu

m— =quB . r=—.
r 1 qB

Suppose the direction of the particle is changed by angle 6 before it
reaches the screen as shown in Fig. A.11, then we have

2
l:r—rcosezi.
2

On the other hand, sinf = L/r, then § ~ L/r, hence,

_I? gBL?
o T 2mw u

l

A.5. Complex Plane

As shown in Fig. A.12, the two-dimensional Cartesian coordinates,
(z,y), have one-to-one correspondence to the complex number z =
x + iy, where i is the imaginary unit (i = —1). Therefore the z—y
plane can be considered identical with the whole complex numbers.
A complex number z is expressed in terms of the polar coordinates

(r,0) as

z=r(cosf +isinb).
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Fig. A.12.

Example A.13. Let z; = cos#; + isin#; and zo = cos s + isin 6.
Calculate the product of z; and 22, and express it in terms of the
polar coordinates.

Solution
The additional theorem of trigonometric functions is written as
cos(f + @) = cos f cos ¢ — sin O sin ¢,
sin( + ¢) = sin 6 cos ¢ + cos O sin ¢.
Using these formulae, we have
2129 = cos 01 cos O3 — sin 01 sin 09 + i sin 01 cos O3 + i sin Oy cos 64

= cos(6 + 02) + isin(0; + 6). u

Example A.13 shows that the function of 8, z = cosf + isin0,
obeys the law of exponent (that is, the product of functions is given
by the sum of variables included in the functions). In the next section,
we will see that the exponential function and the trigonometric
functions are connected with each other by the relation

e = cos +isin 6.

A.6. Euler’s Formula

We naturally extend the domain of polynomial functions to complex
numbers, by replacing real variables with complex variables. In the
same way, we can extend the domain of expandable functions in
Taylor series to complex numbers. For example, the trigonometric
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functions and the exponential function of complex variables can
naturally be defined as

: _ - (_1)k 2k+1 _ . (_]‘)k 2k
San—z:omZ N COSZ—kZO (zk)'z

-y ki (A5)
k=0

(See Example A.9).

Differentiation of polynomials can also be extended naturally to
complex variables. Complex derivatives of functions can be defined
by differentiating the Taylor series of their functions term by term.

Example A.14. Confirm the relations (sinz) = cosz,(cosz) =
—sin z, (%)’ = e* by using Eq. (A.5).

Solution
(SIDZ = Z <m 2k+1> Z — COS 2,
k= k=0
(o] (0]
-1
COS Z ( ) Z 2k — 1
k=0 k’:l
(o] /
_ (_1) 2k'+1 .
= — k/z_:o mz = — Sz,

© &\ > k-1 © K .
\&w) hEmam
-0 k=1 k'=0

Example A.15. Confirm Euler’s formula “e”’ = cos +isin #”. Show
that the trigonometric additional theorem can be derived from the
law of exponents, and that the derivatives of the trigonometric func-
tions can be derived from the derivative of the exponential function.

Solution

Let 0 be a real number.
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e Fuler’s formula:
. > (_1) 2k 1)k 2k+1
0 0= g -— 0 g 7«9 +
cos t/ 4+ 1s1n 2 (2k:) +1 2k:+1)

00
k:O

+ i k+1 02k+1
2k +1)!

8

k=

[en]

e The additional theorems:
The relation /@19 = ¢ . ¢i¢ leads to

cos(0 + ¢) + isin(f + ¢) = (cos @ + isinf)(cos ¢ + isin ¢).

Expanding the right-hand side and equating the real and imaginary
parts of both sides of the equation separately, we obtain

cos(f + @) = cos 0 cos ¢ — sin 6 sin ¢,
sin(f 4+ ¢) = sin 6 cos ¢ + cos 0 sin ¢.
e The derivatives:
(cosO +isin0) = (¢) = ie? = i(cos + isinf) = icos® — sin 0.
Comparing the real and imaginary parts separately, we obtain
(cos0) = —sin®, (sinf) = cosb. [ |

In physical calculations, expressing the trigonometric functions
in terms of the complex exponential functions is often very useful.

Example A.16. There is a diffraction grating with N slits and a
grating constant (a distance between adjacent slits) d. Applying a
monochromatic light of wave length A to this grating, we study the
resulting diffraction pattern (Fig. A.13). Let ¢ be the phase difference
between two adjacent slits. When the oscillation of the light wave
from the first slit is expressed by A coswt, then that from the n-th
slit can be expressed by A cos(wt — (n — 1)¢). The superposition of
the oscillation from all the slits represents the actual oscillation. How
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N n=1
dy ,  n=2
df o n=3
Ll . 9
> et -
l
1
> n=N-1
~ n=N
Diffraction
grating
Fig. A.13.

does the intensity of the diffraction light depend on the diffraction
angle 6.

Solution

Use the relation,
iwt A iwt —iwt
A coswt =Re(Ae ):5(6 +e ),
(Re(z) represents the real part of z). Hereafter, we denote e* as

exp(z). Thus we have

N
> Aexp(iwt —i(n —1)¢)

n=1
N .
‘ . 1 _ e—’LN(z)
o iwt o B _ wt— v
= Ae g 1exp( i(n —1)¢) = Ae 1 _o—id
n=

N
Z Acos(wt — (n—1)9)

n=1
N
= Re (Z Aexpliwt —i(n — 1)‘/5))

n=1
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_ é eiwt 1—e e + e—iwt 1— e
2 1—e i@ 1— e

iNg _iNg
_ ée 2 —e 2 eiwt—lN¢+2 +e —zwt—‘rlN‘P %
9 e _i$

e2 —e 2

sin No/2 N -1

= A——— t———o ).

sing/2 <“’ 2 ¢>

sin Nop/2

sing/2
while its oscillation is described by cos(wt — %qf)) Because the
intensity of wave is proportional to the square of the wave amplitude,
the intensity is proportional to (Slsrllrf\(;(l;é2)2 Since the light waves from
two adjacent slits have the phase difference ¢ = 2rdsinf/\, the

intensity is proportional to,

(nndeind )

Here, the amplitude of the composite wave is described by A

A.7. Differential Equations 1 (Separation of Variables)

A differential equation is a mathematical equation which involves
derivatives of unknown function as well as the function itself. The
function which satisfies a differential equation is called its solution.
The following type of differential equation

W~ PE)QW),
can be solved by separation of variables. This type of equation is
called the differential equation with separable variables.
Dividing both sides of the above equation by the function Q(y)

and integrating both sides over x, we have

/Ql dyd /P(m)dm = /%:/P(x)da:.

The problem is then reduced to two indefinite integrals.

Example A.17. Solve the following differential equation:

d

ay
L+ Pla)y =0,
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Solution

1dy

Integrating both sides of the equation S = —P(x) over z, we have

log |y| = —/P(:L‘)d;v + C(C: an integral constant).

Denoting +e® by C, we have

y = Coexp (— / P(:z:)d;v). (A.6)

In particular, y = 0 (when Cp = 0) is a solution of the differential
equation. [ |

A.8. Differential Equations 2 (Linear)

Differential equations which contain a dependent variable and its
derivatives up to the first-order with respect to all of them are called
linear differential equations. In other words, a linear differential
equation is expressed as

dny dn—ly

P} Y 4 P (@) 4 P@) 4 Ry = Q).

(Pr(z) #0),

where n is called the order of the differential equation. When
Q(xz) = 0, the equation is homogeneous; when Q(z) # 0 it
is inhomogeneous. Dividing the equation by P,(z) reduces the
coefficient of the n-th order derivative to unity, and therefore we
can hereafter assume P,(z) = 1. It is known that general solutions
of n-th order differential equations include n integral constants.

A homogeneous first-order linear differential equation can be
solved by separation of variables (Example A.17).

Example A.18. Let us consider an inhomogeneous first-order liner
differential equation:
dy

T + P(x)y = Q(x). (A7)
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Replacing the constant Cj in Eq. (A.6) by a function, C(z), we

have
y = C(z)exp (— / P(a:)da:)

Find C(z) in the above.

Solution

Substituting

Zi C'(x) exp (—/P(x)d:c> — P(2)C(x) exp <—/P(1;)dx>

into Eq. (A.7), we obtain

C'ayesp (- [ Py ) = Qo)
C'(x) = Q(a) exp ( / P(m)da:) |

which can be integrated as

/Q exp</ ()dm)dm+C’1

(C1: an integral constant). |

Because C(z) has one integral constant, a function,

Y- </Q(x) exp (/ P(a:)da:) dz + cl> exp <—/P(:c)dar> ,

(A.8)

is the general solution of the inhomogeneous first- order liner
differential equation.

In order to find solutions of the inhomogeneous differential
equation, we replace the integral constants in the solution of corre-
sponding homogeneous differential equation by functions of variables.
This is called the method of constant variation.

We next consider second-order linear differential equations with
constant coefficients.
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Example A.19. For a second order differential equation,
d*y

d

find a solution in the form y = ™.

Solution

Substituting y = e into Eq. (A.9) and dividing its result by e**,
we obtain

o 4+ 2pa+q=0. (A.10)

Solutions of this quadratic equation are

ar =-pEp?-q

Then we obtain two solutions for Eq. (A.9) as follows:
y = exp ((—p +Vp? - Q)Jf)

(Note that when p? = ¢, the two solutions are degenerate.) |

When y = wyi, y2 are solutions of the homogeneous linear
differential equation (A.9), a linear combination of y; and ys,

y = Cry1 + Caya,

is also a solution of Eq. (A.9). Because a solution with two integral
constants is the general solution of the second-order differential
equation, y = Cre”® 4+ C_e* 7" is the general solution of the
differential equation (A.9) when p? # ¢. When p? < ¢, ax is
imaginary; thus using Euler’s formula, we can rewrite the general
solution as

y:e_px<Acos \/q—p%—l—BSin\/q—p%),

where A and B are two arbitrary constants. This function represents
an oscillation with the amplitude increasing or decreasing exponen-
tially.

Example A.20. When p? =g, derive the general solution of Eq.
(A.9) by using the method of constant variation.
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Solution
Substituting y = C(x)e P* into the differential equation (A.9) and
dividing its result by e P*  we have
(C"(x) = 2pC"(z) + p*C(2)) + 2p(C'(x) — pC(x)) + p*C(z) = 0,
oo C"(z)=0.

Thus we obtain
C(z) =ax+ [ (a,f are integral constants).
Then, the general solution is written as
y=(az -+ pe " .
Consider an inhomogeneous second-order differential equation:

2

%Jr?pj—iJrqy:f(w)- (A.11)
Simple calculation shows that the sum of a solution of this differential
equation and a solution of the corresponding homogeneous differen-
tial equation (A.9) (i.e., the case of f(z) = 0) is also a solution of the
inhomogeneous differential equation (A.11). Therefore, if we find one
of the solutions of Eq. (A.11), which is called a particular solution,
we can obtain its general solution as the sum of the particular
solution of Eq. (A.11) and the general solution of Eq. (A.9). When
f(x) is of a simple form, a particular solution can be obtained
intuitively.

Example A.21. Let f(x) = kx + 1, ¢ # 0 and find a particular
solution of Eq. (A.11).

Solution

Let y = ax + § be a particular solution of the differential equation
(A.11). Then by substituting y = ax + (3 into Eq. (A.11), we have

qax + 2pa + qf = kx + 1,
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which must be an identity, so that we obtain the relation

k I 2k
ook gl Y2
q q q
Therefore, we find that
k I 2kp
Yy=- - 5
q q q
is a particular solution of Eq. (A.11). [ |

Example A.22. Find a particular solution of Eq. (A.11) by using
the method of constant variation.

Solution

Substituting y = C(z)e* (o = a4) into the differential equation
(A.11) and dividing its result by e**, we obtain

(C"(x) + 200" (z) + a*C(x)) + 2p(C'(2) + aC(x)) + qC(z)
= f(x)e .
From Eq. (A.10), we have
C"(z) +2(p+ )C'(x) = f(z)e .

This equation is a first-order liner differential equation for C’(zx).
Thus one of the solutions can be written as

C,(l‘) _ e—2(p+a)a:/f(x)e@p—o—a)a:dx'
By integration we get

C(x) = /e—Q(PJra)w </f(:c)e(2p+a)xdx> dz.

Therefore, we find that

y = eax/e—Q(p-i—a)x </f(x)e(2p+a)xdx> dz,

is a particular solution. [ |
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A.9. Partial Differential Equation

Let f(z1,2z9,...2,) be a function of n independent variables
Z1,X2,...Ty. 1t is called the partial differentiation to differentiate
f with respect to x; while keeping the other variables fixed. The
derivative given by this procedure is written as g—i. Higher order
partial derivatives are defined in the same way.

Equations for f(x1,x9,...2,) and its partial derivatives are
called partial differential equations. On the other hand, differen-
tial equations with a single variable, which are described in Secs. A.7
and A.8, are called ordinary differential equations. It is known
that the general solutions of n-th order partial differential equations
contain n arbitrary functions.

Example A.23. A function of two variables of real numbers, f(z,y),
satisfies a partial differential equation:

0% f B
oxdy

Then, find f(z,y).

Note: 82f 9 <8f>

8x8y dy
Solution
o (gi) = 0 implies that g—i is independent of x. Therefore, we have
af : : .
0 = ¢(y)(¢(y) is an arbitrary function.).
Yy
Then,
/ oy Y(z) + (y)- (A.12)
Here, ¢(z) and ®(y) = [ ¢(y)dy are arbitrary functions of = and y,
respectively and 1[)( ) comes out as an integral constant when f is
considered a function of y. [ |

Although it is difficult to solve partial differential equations
generally, some kind of partial differential equations can be solved by
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separating variables or by reducing the result to ordinary differential
equations.

Example A.24. A function of two variables of real numbers, f(x,y),
satisfies a partial differential equation:

or 8f
8:0 8y

Assuming f(z,y) = X(2)Y (y), find the solution of Eq. (A.13).

= 7. (A.13)

Solution
Substituting f(z,y) = X(2)Y (y) into Eq. (A.13), we have
Yaa—i( X 68—1; = XY,
which yields a relation
10X 10Y

Xor Yoy
The left-hand side is a function of x alone, and the right-hand side is a
function of y alone. In order to make this equation valid in the entire
domain of real numbers, the values of both sides must be constant
and equal to each other. This fact leads to two ordinary differential
equations:

ia—X—c ia—Y—c (cz + ¢y =1)
Xox 7 Yoy VT VoY
0X oY
ToeX, So=¢,
ox ¢ oy “

from which we can obtain
X =Cpexp(cpz), Y = Cyexp(cyy).

Here, C; and C} are integral constants.
Thus, the solution can be written as

[ =Cexp(czx + ¢cyy), (ca+cy=1,C=CCy). [ ]
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Let us consider the following partial differential equation.

’f  20°f

o2~ ¢ 0a?

This is called the one-dimensional wave equation, which repre-

=0 (c>0is a constant). (A.14)

sents many physical phenomena such as oscillations of strings.
You can check that the function can describe the superposition
of two waves moving toward each other,

f(x, t) = Asin2r (;—I—ft) + Bsin 27w (; —ft)

= Asin 2%(:0 + ct) + Bsin 2%(3: —ct), (e = f)N),
(A.15)

satisfies Eq. (A.14). Here, Aand B are constant, A is the wavelength
and f denotes the frequency, respectively.

Example A.25. Transform the variables = and y to £ = = + ¢t and
n = x —ct, and find the general solution of the wave equation (A.14).
You can use the following formulas for the partial differentiation:

of Ofoc _ofon  of afoc  ofon

dr  0Edx | Inda’

ot~ 9cot ' On ot (A-16)
Solution

Using Eq. (A.16), we have
of ofo¢  Of on <6f 8f>
e :

ot — acot  onot \oE  On

f [0 (of\ O (0f
o =< oz (5) - (57)]

_ 2 (321‘" 5 Of 821’) '

o2~ “acom | on?
Similarly we have

PF_Pr L, 0

0x?  0€2 ocon — on?
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Substituting these relations into the wave equation (A.14), we
obtain

o*f
ocon

Therefore from Eq. (A.12), we obtain the solution in the form

f=(&) + o),

where ¥ (&) and ¢(n) are arbitrary functions of £ and 7, respectively,
or explicitly,

f=v(@+ct)+ op(x — ct). (A.17)
|

Equation (A.17) corresponds to the superposition of sine waves
as given in Eq. (A.15). Here £ = x + ¢t is proportional to the phase
of ¥(§), and is constant at the equiphase points. Differentiating £
with respect to time ¢ at the equiphase points, we obtain

dr
- ¢
This means that the equiphase points of ¥ (§) propagate with the
speed c in the —x direction. In the same way, the equiphase points
of ¢(n) propagate with the speed ¢ in the +x direction. The solution
of the wave equation is a superposition of waves propagating along
the z-axis with the speed c in the positive and negative directions.

A.10. Differential Equations and Physics

We consider some specific physical problems using the knowledge of
differential equations described above.

Example A.26. A particle of mass m is moving with initial velocity
vo along the z-axis. A resistance force of magnitude awv + Bv? acts
on a particle with velocity v in the direction opposite to the velocity.
Here o and (8 are constants. Write v as a function of .
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Solution

The equation of motion for the particle is

md_v
dt

:—Oé'l)—ﬂ’l}2 . #d_’():_i
T aw+ B dt m’

Integrating both sides over ¢, we obtain

dv 1
[wavm = wt+e

Here, the left-hand side is calculated as

dv (1 /1 15}
/v(a%—ﬁv)_/a(;_a—l—ﬁv)dv

1 1
= — (log Jv| — log | + Bv|) = — log
« [0

v
a+ fu

Then, we get

(67

exp (%t — aC) — ﬁ'

v =

Employing the initial condition that v = vg when ¢ = 0, we have

paC _ O + B g
Vo ’
Substitution of this relation into the above solution for v yields

(67

(a+ Buo) exp (=t) = o

v = V0- ||

Example A.27. Under the influence of a uniform gravity along the
negative z-axis, an ideal gas is enclosed in a cylindrical container at
temperature 7' (Fig. A.14). Derive the pressure of the gas at height z,
p(2), where the molecular weight of the gas is 1 and the gas constant
is R. Let the acceleration of gravity be g and p(0) = po.
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z
A

Fig. A.14.

Solution

Let a molarity (the number of moles in the unit volume) at height z
be p(z), the equation of state is

p(z) = p(z)RT. (A.18)

Let the base area of the container be A, and consider the balance of
forces acting on the gas inside the infinitesimal region A - Az. The
molarity p(z) inside this infinitesimal region can be treated to be
constant, so that we have

p(2)A=p(z+ Az)A+ p [p(z)AAz] g. (A.19)
Denoting the pressure change accompanied by the height difference

Az by Ap = p(z+Az)—p(z), we substitute Eq. (A.18) into Eq. (A.19)
and employ replacements, Az — dz and Ap — dp, to obtain

Ap dp  pg
R, = kel)g = = —np(2). (A.20)

Separating the variables (refer Sec A.7 Differential Equation 1) and
using p(0) = pp, we have

Pdp /Z g P g
—=— —dz = log—=—-——==z2,
/po p o RT Po RT

from which we finally obtain

p(z) = poexp (—%Z)- -
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absorbed heat, 188 balance of the forces, 7

absorber, 225 Balmer series of the spectrum, 243
acceleration, 15 bar magnet, 128

additional theorem, 339, 341 base, 73

adiabatic change, 200 batteries, 129

adiabatic compression, 187 beats, 106

adiabatic expansion, 188 best-fit, 288

adiabatically, 12 big bang, 86

air resistance, 16 black hole, 264

altitude, 203 Bohr model, 241

Bohr’s quantization condition, 241

altitude angle, 7
Bohr-Sommerfeld quantization

Ampere’s law, 144

amplitude, 91, 343 condition, 244
Boltzmann constant, 195

boundary condition, 104
Boyle’s law, 186, 212, 299
bright fringes, 101
brownian motion, 202
buoyancy, 6

buoyant force, 6

angular frequency, 91
angular momentum, 54
angular separation, 88
angular velocities, 68, 78
antenna, 234

antinodes, 104

apex angle, 110
aphelion, 63
approximation formulae, 335
arbitrary constants, 346
area of the sector, 60

canis major, 254
capacitance, 116, 143
capacitor, 116, 141
capacitor plates, 141

area of the triangle, 60 carbon, 185

areal velocity, 60 car navigator, 228
astronomical units, 46 Cartesian, 323
atmosphere, 9 cartesian coordinate system, 164
atmospheric pressure, 9, 186, 304 celestial bodies, 46
atomic clocks, 239 center of mass, 65

atomic nucleus, 223 central force, 59, 325
atomic spectra, 241 centrifugal force, 47, 84
atoms, 186 centripetal force, 242
attenuation of the sound, 98 cgs systems, 3

atwood machine, 71 Chandrasekhar mass, 263
average molecular weight, 12 chaotic fashion, 213
avogadro’s number, 185, 186 charge, 137

355
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charged body, 137
Charles’ law, 302
circle, 64

circuit equation, 157
circuits, 123
circular motion of the rods, 84
circular path, 111
clock, 228

clouds, 11

cluster, 246

cluster of water, 111

coefficient of kinetic (sliding) friction,

69
coefficient of static friction, 69
coil, 128
comet, 49
complex number, 338
complex plane, 338
complex variables, 339
concentration, 202
concentration gradient, 205
conductance, 125
conduction bands, 313
conductor, 123
cone-shaped region, 176
cone-shaped wave, 109
conic sections, 64
conservative forces, 20
constant, 91
constant acceleration, 15
constructive interference, 101, 311
coordinates, 323
copper, 187
cosmological principle, 85
Coulomb’s law, 137
cross-sectional area, 124
cyclotron angular frequency, 172
cyclotron motion, 172
cyclotron radius, 172
cylindrical coordinate system, 323

dark fringes, 101

de Broglie wavelength, 242
degenerate, 346
degenerate pressure, 257

Degenerate state, 256, 257

degrees of freedom, 64

density of air, 9

density of ice, 5

density of mass, 67

density of seawater, 5

derivative, 15

destructive interference, 101

determinant, 55

device, 141

differential equation with separable
variables, 343

differential equations, 343

diffraction angle, 342

diffraction grating, 341

diffraction light, 342

diffraction pattern, 341

diffusion, 202

diffusion coefficient, 205

dimension, 8

dimensional analysis, 8, 158

dimensional relation, 114

dimensionless coefficient, 9

dimensionless constant, 158

Dirac equation, 246

direct-current, 123

dispersion of light, 115

displacement, 15, 93, 117

displacement current, 166

displacement of the weight, 92

distance, 4

doppler effect, 107, 225

doppler effect of light, 109

dwarf planets, 46

dynamics, 204

Earth, 46

Edwin Hubble, 85

effective potential, 326
effective potential energy, 51
eigenfrequency, 91

Einstein relation, 203, 307
elastic forces, 21

elastic potential energy, 22
electric charge, 116, 123, 137
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electric current, 123

electric field, 116, 137

electric field lines, 138

electric flux, 138

electric force, 137

electric potential, 126

electric resistance, 123

electric signal, 98

electrical charges, 13

electricity, 134

electromagnetic induction, 126, 128,
152

electromagnetic wave, 116, 164, 223

electromagnetism, 123

electromotive force (emf), 126

electron, 171, 241

electronic state, 242

electrostatic energy, 141

electrostatic force, 242

elementary particles, 223

ellipse, 64

elliptical orbit, 30, 111

emitted sound, 107

empirical temperature, 185

energy, 4

energy density, 141

energy state, 223

equation of motion, 17

equation of rotational motion, 65

equation of state for ideal gas, 186

equation of the conic section, 64

equation of the linear motion of the
center of mass, 81

equation of the rotational motion, 81

equation of translational motion, 65

equator, 7

equilateral 2n-sided prism, 72

equilateral triangle orbits, 248

equilibrium states, 202

equiphase points, 352

error, 274

error bar, 288

error propagation, 285

FE x B drift motion, 173

Euler’s formula, 339

even function, 335
evolution of stars, 262
expanding universe, 85
exponential function, 339
external electric field, 119
external forces, 53
extinction length, 293
extrapolation, 292

eye measurement, 290

Faraday’s law, 152
fate of the sun, 260
fate of the universe, 87
Fermi momentum, 257
fermions, 255
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first law of thermodynamics, 188, 197

fixed end, 104

fleming’s left-hand rule, 128

fluctuation, 202

fluid pressure, 6

forbidden energy gap, 313

frame of reference, 112

free end, 104

free-fall body, 226

frequency, 91

frequency condition, 241

frictional coefficients, 71

frictional force, 21

frictionless plane, 44

fundamental dimensions, 158

fundamental equation of the wave,
170

fundamental laws, 17, 29

fundamental units, 3

future of the universe, 87

galaxies, 85

gamma ray, 223

gas constant, 186, 302

gas molecules, 186

gaseous states, 189

Gauss’s law, 139

general relativity, 223, 226, 235
general solution, 346

general theory of relativity, 85
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generalized quantization condition, indirect measurements, 285
241 induced current, 152
geomagnetic plasma, 177 induced electric field, 153
induced emf, 128, 152
inertial force, 226
inertial reference frame, 226
infinitely long solenoid, 146
infinitesimal displacement, 20

geomagnetic region, 177
global positioning system, 233
GPS, 228

gram, 3

grating, 307

grating constant, 341

gravitational acceleration, 5
gravitational energy of a star, 261
gravitational force, 7

gravitational potential energy, 22, 29
gravity force, 204

hand dynamo, 134

handle, 134

harmonic oscillation of an electron,
245

heat, 12, 185

heat capacity, 186, 187

heat capacity ratio, 294

heat conduction, 188, 202

heat emission, 193

heat insulating vessel, 187

heat of vaporization, 188

Heisenberg uncertainty principle, 254

heliocentric theory, 253

homogeneous, 344

hooke’s law, 288

Hubble constant, 85

Hubble parameter, 85

humidity, 188

hydrogen atom, 242

hydrogen fusion, 260

hyperbola, 64

iceberg, 5

ideal gas, 185
imaginary unit, 338
impulse, 52, 79, 194

in phase, 103, 168

in series, 99

incident wave, 104
indefinite integrals, 343

infinitesimal mass, 331
infinitesimal region, 330
infinitesimal volume, 329
inflation, 86

inflation of a balloon, 85
inhomogeneous, 344
initial condition, 16
initial phase, 91

initial state, 197

initial velocity, 50

inner product, 18, 139

innermost shell (K shell), 246

integral variables, 20
intensity, 101
intensity of wave, 343

interactions among molecules, 186

interfere, 102
interference, 101
interference effect, 102
intermolecular forces, 198
internal energy, 187, 196
internal forces, 53
internal motion, 196
internal states, 223
International System, 3
interplanetary region, 171
intrinsic energies, 223
inverse functions, 321

inverse trigonometric functions, 321

ionosphere, 171

isochronism of pendulum, 93

isotropic universe, 85
J. C. Maxwell, 164

kepler’s first law, 29, 30
kepler’s second law, 30
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kepler’s third law, 31
keplerian motion, 56
kinetic energy, 18, 19
kinetic-frictional force, 21
kinetic theory of gases, 193

lamp, 228

latitudes, 7

law of action-reaction, 53

law of bio and savart, 157

law of conservation of energy, 18

law of conservation of mechanical
energy, 24

law of conservation of momentum, 53

law of electromagnetic induction, 152

lift of an airplane, 9

light waves, 101

light-emitting diodes (LED), 307

line integral, 145

linear, 344

linear differential equations, 344

linear electric current, 159

linear resistance, 124

longitudinal waves, 111

lorentz force, 149

loss cone, 176

loudspeakers, 228

Lyman series of the spectrum, 242

Mossbauer effect, 225
Maclaurin expansion, 333
macroscopic properties, 211
macroscopic quantities, 211
macroscopic states, 202
magnetic field, 126, 143
magnetic field lines, 127
magnetic-flux-density, 143
magnetic force, 128, 143
magnetic mirror effect, 177
magnetosphere, 171
massless photons, 226
matrix, 55

matter wave, 242
Maxwell’s equations, 164
Maxwell-Ampere’s law, 165
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Mayer’s relation, 199

mean free path, 207

mean free time, 207

mean square displacement, 208
measurement range, 276
mechanical energy, 24
mechanics, 15

medium, 93

mega parsec, 88

meridian, 7

method of constant variation, 345
microphones, 98

microscopic behaviors, 211
microscopic point of view, 241
microscopic system, 241
miniature representation, 10
mirror, 231

mixture, 202

mobility, 205

molar heat at constant pressure, 199
molar heat at constant volume, 199
molar number, 186

molarity, 354

mole, 185

molecules, 186

moment of force, 54

moment of inertia, 65, 80
momentum, 52

monatomic molecules, 196
monochromatic light, 341
motion of charged particles, 171
Motor, 135

moving source, 225

multiple integral, 328

N-pole, 127

n-th stationary state, 242
Nagaoka proposed, 246
natural logarithm, 73
Neptune, 46

nest of comets, 49
neutron, 255

neutron star, 263

newton’s law of universal gravitation,
29
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newtonian mechanics, 17 parallax, 253

nitrogen, 196 parallel, 124

nodes, 104 parallel-plate capacitor, 116

non-conservative forces, 20 parallelogram, 54

non-equilibrium phenomena, 202 parsec, 88

non-equilibrium states, 202 partial differential equation, 349

non-linear resistance, 124 partial differentiation, 349

non-ohmic resistance, 124 particular solution, 347

non-relativistic, 258 path difference, 101

normal force, 74 p —V graph, 191

normal reaction force, 70, 81 pendulum, 159

north pole, 7 perihelion, 63

nucleon, 262 period, 91

nucleus, 223 periodic, 63

nucleus proton, 242 periodic motions, 247

numerical factor, 8 permanent magnet, 127, 136
permeability, 116

odd function, 335 permeability of vacuum, 144

Ohm’s law, 123 permittivity of vacuum, 137

ohmic resistance, 124 phase, 91, 352

one-dimensional motion, 19 phase difference, 95, 341

one-dimensional system, 19 phase space, 244, 255

one-dimensional wave equation, 351 phase volume, 255

one-to-one correspondence, 321, 338 ¢-component, 57

oort cloud, 49 photons, 223

opposite phase, 100 physical quantity, 8

orbit of Pluto, 46 pivot, 92

orbit of the earth, 46 Planck constant, 223, 242, 307

orbital period, 50 plane with friction, 44

orbital radius, 50 plasma wind, 177

order, 344 plasmas, 171

ordinary differential equations, 349 playback speed, 10

origin, 67 Pluto, 46

oscillation, 91 point charge, 137

osmotic pressure, 203 Poisson’s equation, 201

outer surroundings, 188 Poisson’s law, 294

outermost shell, 247 polarization, 117

output amplitude, 99 polarization charges, 118

output voltage, 99 polynomial, 333

oxygen, 196 potential difference, 123
potential energy, 21, 189

parabola, 64 pressure, 4, 186

parabolic path, 16 principle of constancy of light

parabolic trajectory, 32 velocity, 109

parachute, 39 progressive wave, 168
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projectile motion, 16

propagation of electromagnetic waves,
164

propagation speed, 94, 168

protons, 171

psychrometer, 187

pulse-like wave, 109

pulse signal, 234

quadratic equation, 346

quantity of heat, 186

quantity of state, 185
quantization condition, 242
quantum mechanics, 255
quantum number, 242

quantum theory, 241, 242
quasi-static process, 197
quasistatic adiabatic process, 201

radial component, 47
radiation source, 225
radio wave, 164

range, 281

rational functions, 334
r-component, 57, 323
reading error, 281

real current, 166

real number, 340
receding speed, 85

recoil energy, 224
recoiling nucleus, 224
rectangular, 323

red light, 120

red shift, 85

reference frame, 154, 226
reference point, 22
reflected wave, 104
refraction angle, 116
refractive index, 115
regular tetrahedron, 131
relative permeability, 116
relative permittivity, 116
Relativistic, 258
relativistic correction, 235
relativistic effect, 234, 246
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relativistic wave equation, 246
representative point, 244
resistance, 123

resistivity, 124

resistors in series, 124
resonance absorption, 224
rest frame of the source, 85
restoring force, 91

resultant wave, 104

reversible, 198

reversible process, 198
right-handed screw, 54

rigid body, 54, 64

root mean square velocity, 196
rotation of rods, 78

rotational angle, 65

rotational axis, 65

rotational energy, 45
rotational kinetic energy, 68
ruler, 228

S-pole, 127

same phase, 100

satellites, 233

scale factor, 10, 86

scale transformation, 8

Schrodinger equation, 248

second-order linear differential
equations, 345

self-induced emf, 156

self-inductance, 156

self-induction, 156

semi-classical quantum theory, 241

semiconductors, 313

semi-major axis, 31

separation of variables, 343

shock waves, 109

SI, 3

siemens, 125

significant digits, 11

significant figures, 280

simple harmonic oscillation, 91

simple pendulum, 91

sine function, 93

single-valued functions, 321
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sinusoidal wave, 93
sirius, 254
skydiver, 39
skydiving, 39

slide caliper, 277

sliding, 69

sliding velocity, 71
slit, 101

smooth plane, 79
sodium, 246

sodium cluster, 247
solar system, 49, 171
solenoid, 127

solid, 225

solute particles, 202
solution, 343

solvent molecules, 202
sound, 98

sound pulse, 228, 229
source of light, 225
South and North Poles, 177
space probe, 46
speaker, 98

special relativity, 109, 228
specific heat, 187

speed of light, 116, 144
spherical coordinate system, 323
spherical shell, 68, 331
spherical waves, 109
spring, 23, 91

square orbits, 248
square prism, 71
standard, 185

standard deviation, 282
standing wave, 103, 244
static friction, 71

static view, 204
stationary observer, 225
stationary source, 225
stationary state, 241
statistical errors, 281
Stokes’ law, 12, 205
string, 92

sun, 7, 46

super-shell, 241

superposition of waves, 100
symmetry axis, 66

taylor expansion, 333

taylor polynomial, 333

taylor series, 333

temperature, 185

temperature gradient, 215

tension, 26, 72

tension of the string, 92

terminal constant value, 39

terminal velocity, 40

test charge, 137

the absolute temperature, 186

The law of conservation of
momentum, 53

thermal balance, 185

thermal conduction, 193, 211

thermal conductivity, 192, 215

thermal contact, 185

thermal equilibrium state, 185

thermal motion, 186

thermal radiation, 217

thermodynamics, 185

thermodynamic temperature, 186

thermometers, 188

thermos bottle, 212

f-component, 324

Thomson model, 245

three-dimensional motion, 19

three-dimensional polar coordinate
system, 323

thunderbolts, 13

thunderstorm, 13

time dilation, 225

trajectory, 34, 243

transition, 242

translational kinetic energy, 45

translational motion, 45, 196

transverse axis, 78

trapezoid, 15

triangular glass prism, 115

trigonometric functions, 339

trigonometric identities, 101

trough of the wave, 111
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two-dimensional polar coordinate, 56,

323
two-dimensional rectangular
coordinates, 57

ultra-relativistic, 258
uncertainties, 255
uniform cylinder, 66
uniform disk, 66
uniform sphere, 66

unit of acceleration, 3
unit of energy, 4

unit of force, 3

unit of length, 3

unit of mass, 3

unit of mass density, 3
unit of pressure, 4

unit of speed, 3

unit of time, 3

unit of volume, 3

unit size, 3

unit vectors, 55, 324
universal gravitation, 29
universal gravitational constant, 29
universe, 85

V-shaped current, 161
vacuum, 85

vacuum permittivity, 336
valence bands, 313
vector algebra, 19

vector product, 54
velocity, 15

vernier, 277

vibration energy, 190
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video, 10

videotape, 10

violet light, 120

viscosity, 12

viscosity of the water, 205
viscous force, 12

visible light, 118, 164
voltage, 123

volume element, 67, 327
volume integral, 328

water droplets, 11
water molecule, 12
water vapor, 11
water waves, 110
wave equation, 95
wave motion, 110
wave number, 94
wave propagation, 93
wave travelling, 95
waveform, 98
wavelength, 85, 94
waves, 93

weight, 91

white dwarf, 253, 262
white light, 115

wing of an airplane, 9
work, 18

r-axis, 15
z-component, 57
X-ray, 164

y-component, 57
young’s double-slit experiment, 100
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